Skip to Content
Merck
  • Mineralization of wastewater from the pharmaceutical industry containing chloride ions by UV photolysis of H2O2/Fe(II) and ultrasonic irradiation.

Mineralization of wastewater from the pharmaceutical industry containing chloride ions by UV photolysis of H2O2/Fe(II) and ultrasonic irradiation.

Journal of environmental management (2014-04-29)
J M Monteagudo, A Durán, I San Martín
ABSTRACT

The mineralization of pharmaceutical wastewater containing chloride ions using a UV/H2O2/Fe(II) process was studied. The addition of Fe(II) to the UV/H2O2 system did not improve the degradation efficiency due to inhibition of the photo-Fenton reaction, at acid pH, in the presence of chloride ions in these wastewaters. The increase of pH from 2 to 7 increased the degree of mineralization under UV photolysis of H2O2 because more HO radicals are available by HOCl dissociation reaction. Under the selected operation conditions ([H2O2]o = 11,500 ppm, [Fe(II)] = 0 ppm, [TOC]o = 125 ppm and pH = 7), 100% of TOC removal was attained in 120 min. A significant synergistic effect of combining photolysis (UV/H2O2) and sonolysis was observed. Sonophotolysis (UV/H2O2/ultrasound) technique significantly increased the degree of mineralization (100% TOC removal in 90 min using 6500 ppm H2O2) when compared with each individual process. Sonochemical reaction was favored by the presence of chloride ions since the concentration of contaminants at the gas-liquid interface increased. Free radicals reaction was the controlling mechanism in the UV/H2O2/ultrasound system. HO radicals were the main oxidative intermediate species in the process, although hydroperoxyl radicals (HO2) also played a role. The contribution of thermal-pyrolytic reaction (in gas-phase) to sonophotolysis process was negligible.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Hydrogen Peroxide Solution, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Potassium permanganate, ≤150 μm particle size, 97%
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Potassium permanganate, ACS reagent, ≥99.0%
Sigma-Aldrich
Potassium permanganate, ACS reagent, ≥99.0%, low in mercury
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Hydrogen peroxide solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Potassium permanganate solution, 2 mM
Sigma-Aldrich
Potassium permanganate solution, 0.2 M
Sigma-Aldrich
Potassium permanganate solution, 0.01 M
Sigma-Aldrich
Potassium permanganate solution, 0.02 M
Sigma-Aldrich
Potassium permanganate solution, 0.1 M
Sigma-Aldrich
Potassium permanganate solution, 5 mM