Skip to Content
Merck
All Photos(2)

Key Documents

GF66475390

Zinc

foil, 5m coil, thickness 0.25mm, as rolled, 99.95+%

Synonym(s):

Zinc, ZN000301

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Zn
CAS Number:
Molecular Weight:
65.39
MDL number:
UNSPSC Code:
12141750
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

1 mmHg ( 487 °C)

Assay

99.95%

form

foil

manufacturer/tradename

Goodfellow 664-753-90

resistivity

5.8 μΩ-cm, 20°C

bp

907 °C (lit.)

mp

420 °C (lit.)

density

7.133 g/mL at 25 °C (lit.)

SMILES string

[Zn]

InChI

1S/Zn

InChI key

HCHKCACWOHOZIP-UHFFFAOYSA-N

General description

For updated SDS information please visit www.goodfellow.com.

Legal Information

Product of Goodfellow

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Pritesh Hiralal et al.
ACS nano, 4(5), 2730-2734 (2010-04-27)
Solid-state and flexible zinc carbon (or Leclanche) batteries are fabricated using a combination of functional nanostructured materials for optimum performance. Flexible carbon nanofiber mats obtained by electrospinning are used as a current collector and cathode support for the batteries. The
Huibo Chen et al.
Nanoscale research letters, 5(3), 570-575 (2009-01-01)
We reported the optical and wettability properties of aligned zinc oxide micro/nanotube arrays, which were synthesized on zinc foil via a simple hydrothermal method. As-synthesized ZnO micro/nanotubes have uniform growth directions along the [0001] orientations with diameters in the range
Hongqin Liu et al.
ACS applied materials & interfaces, 1(9), 2086-2091 (2010-04-02)
Zinc, silicon, and steel superhydrophobic surfaces were prepared by a simple solution-immersion technique. In the case of zinc, the method consists of dipping of the substrate in a prehydrolyzed methanol solution of 1H,1H,2H,2H-(perfluorooctyl)trichlorosilane [CF(3)(CF(2))(5)(CH(2))(2)SiCl(3), PFTS] for 24 h at 50
Conghua Lu et al.
Chemical communications (Cambridge, England), (33)(33), 3551-3553 (2006-08-22)
Large-scale, ultralong ZnO nanowire and nanobelt arrays with honeycomb-like micropatterns have been fabricated by hydrothermal oxidation of zinc foil in aqueous alkaline (NH4)2S2O8 solutions.
Lance Brockway et al.
Physical chemistry chemical physics : PCCP, 15(17), 6260-6267 (2013-03-23)
A simple method for the large-scale synthesis of gram quantities of compound semiconductor nanowires without the need for any external catalysts or templates is presented. This method is demonstrated using zinc phosphide (Zn3P2) and zinc antimonide (β-Zn4Sb3) nanowires as example

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service