Accounts of chemical research, 44(4), 289-298 (2011-03-03)
Nitric oxide (NO) can induce apoptosis (programmed cell death) at micromolar or higher doses. Although cell death via NO-induced apoptosis has been studied quite extensively, the targeted delivery of such doses of NO to infected or malignant tissues has not
Topics in current chemistry, 292, 211-229 (2010-01-01)
Stoichiometric cycloruthenation reactions of substrates containing Lewis-basic functionalities set the stage for efficient ruthenium-catalyzed C-H bond functionalization reactions. Thereby, selective addition reactions of C-H bonds across alkenes or alkynes enabled atom-economical synthesis of substituted arenes. More recently, ruthenium-catalyzed direct arylation
Dalton transactions (Cambridge, England : 2003), 40(41), 10793-10800 (2011-08-23)
The introduction of multifunctionalities for tumour targeting is becoming a popular strategy toward the development of new therapeutic agents. In particular, the multifaceted potential of ruthenium(II)-arene complexes show great promise as chemotherapeutics. An ever-increasing number of papers dealing with the
Current medicinal chemistry, 17(31), 3643-3657 (2010-09-18)
The discovery of the involvement of nitric oxide (NO) in several physiological and pathophysiological processes launched a spectacular increase in studies in areas such as chemistry, biochemistry, and pharmacology. As a consequence, the development of NO donors or scavengers for
Interest in Ru anticancer drugs has been growing rapidly since NAMI-A ((ImH(+))[Ru(III)Cl(4)(Im)(S-dmso)], where Im = imidazole and S-dmso = S-bound dimethylsulfoxide) or KP1019 ((IndH(+))[Ru(III)Cl(4)(Ind)(2)], where Ind = indazole) have successfully completed phase I clinical trials and an array of other
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.