930741
Poly(oligoethylene glycol methacrylate)
Synonym(s):
POEGMA, Poly(oligo(ethylene glycol)methacrylate)
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
General description
Poly(oligo(ethylene glycol) methacrylate) (POEGMA) is a family of polymers consisting of a hydrophobic methacrylate backbone and hydrophilic ethylene oxide (EO) side groups with highly branched architecture. The highly branched architecture with a high density of oligo EO moities enhances the solubility of the polymer in water.
Application
- Drug delivery- enhances the stability and delivery of siRNA and eliminates PEG antigenicity
- Biosensor coatings- provides an anti-fouling surface
- Stimuli-responsive hydrogels for tissue engineering, drug delivery, and other biomedical applications
Poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) is a family of polymers consisting of a hydrophobic methacrylate backbone and hydrophilic ethylene oxide (EO) side groups with highly branched architecture . The side chain EO segments enhance the solubility of the polymer in water , exhibiting many interesting properties such as non-fouling , stealth, anti-PEG antibodies & thermo-responsive behaviors.
Features and Benefits
- Highly branched architecture and high density of oligo ethylene oxide moieties
- Water soluble
- Nonfouling and thermo-responsive behaviors
- Viable alternative to PEG in biological and biomaterial applications
Storage Class Code
10 - Combustible liquids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Don't see the Right Version?
If you require a particular version, you can look up a specific certificate by the Lot or Batch number.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Langmuir : the ACS journal of surfaces and colloids, 36(49), 15018-15029 (2020-12-05)
Understanding of the temperature-induced phase transition of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) random copolymers with varied composition remains largely incomplete. Upon heating they can form either macroscopically phase-separated aggregates or micelles. We examined the effect of polymer architecture by
In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays
Advanced Materials, 32 (2020)
ACS biomaterials science & engineering, 7(9), 4258-4268 (2021-02-12)
Reactive electrospinning is demonstrated as a viable method to create fast-responsive and degradable macroporous thermoresponsive hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA). Hydrazide- and aldehyde-functionalized POEGMA precursor polymers were coelectrospun to create hydrazone cross-linked nanostructured hydrogels in a single processing
Nature biomedical engineering, 1 (2016-01-01)
The delivery of therapeutic peptides and proteins is often challenged by a short half-life, and thus the need for frequent injections that limit efficacy, reduce patient compliance and increase treatment cost. Here, we demonstrate that a single subcutaneous injection of
(Co)polymers of oligo(ethylene glycol) methacrylates?temperature-induced aggregation in aqueous solution.
Journal of Polymer Science Part A: Polymer Chemistry, 51, 614?623-614?623 (2013)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service