Skip to Content
Merck
All Photos(2)

Key Documents

901251

Sigma-Aldrich

[2,2′-Bipyridine]-6-carboxylic acid hydrochloride

Synonym(s):

PPA directing group

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C11H8N2O2 · xHCl
CAS Number:
Molecular Weight:
200.19 (free base basis)
MDL number:
UNSPSC Code:
12352101
NACRES:
NA.22

form

powder or crystals

Quality Level

reaction suitability

reaction type: C-C Bond Formation
reagent type: catalyst
reagent type: ligand
reaction type: C-H Activation

InChI

1S/C11H8N2O2/c14-11(15)10-6-3-5-9(13-10)8-4-1-2-7-12-8/h1-7H,(H,14,15)

InChI key

ZQTILGDVDYWICD-UHFFFAOYSA-N

Application

Developed in the Engle lab, this 2,2′-bipyridylamide (PPA) is a pincer-like, removable tridentate directing group that stabilizes 6-membered palladacycles for olefin functionalization. Together with similar ligand PAQ (901250), researchers demonstrated regioselective remote hydrocarbofunctionalization of alkene-containing substrate classes (e.g. 4-pentenoic acids, allylic alcohols, homoallyl amines, bis-homoallylamines) using Pd(II) catalysis.

related product

Product No.
Description
Pricing

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Miriam L O'Duill et al.
Journal of the American Chemical Society, 139(44), 15576-15579 (2017-10-04)
Removable tridentate directing groups inspired by pincer ligands have been designed to stabilize otherwise kinetically and thermodynamically disfavored 6-membered alkyl palladacycle intermediates. This family of directing groups enables regioselective remote hydrocarbofunctionalization of several synthetically useful alkene-containing substrate classes, including 4-pentenoic

Related Content

The Engle lab strives to invent novel catalytic alkene and alkyne functionalization methods to expedite organic synthesis. These transformations offer a powerful platform for conversion of simple, abundant, and planar starting materials into densely functionalized, stereochemically complex products in a single step. To this end, the Engle lab has developed various substrate directivity strategies in which native functional groups can be temporarily masked with auxiliaries that are capable of reversibly binding the metal catalyst, thereby enhancing kinetic reactivity, suppressing unwanted side reactions, and facilitating high selectivity. The Engle lab works with us to make synthetically enabling directing groups, catalysts, and ligands readily available to the synthetic community for reaction discovery and small-molecule synthesis.

The Engle lab strives to invent novel catalytic alkene and alkyne functionalization methods to expedite organic synthesis. These transformations offer a powerful platform for conversion of simple, abundant, and planar starting materials into densely functionalized, stereochemically complex products in a single step. To this end, the Engle lab has developed various substrate directivity strategies in which native functional groups can be temporarily masked with auxiliaries that are capable of reversibly binding the metal catalyst, thereby enhancing kinetic reactivity, suppressing unwanted side reactions, and facilitating high selectivity. The Engle lab works with us to make synthetically enabling directing groups, catalysts, and ligands readily available to the synthetic community for reaction discovery and small-molecule synthesis.

The Engle lab strives to invent novel catalytic alkene and alkyne functionalization methods to expedite organic synthesis. These transformations offer a powerful platform for conversion of simple, abundant, and planar starting materials into densely functionalized, stereochemically complex products in a single step. To this end, the Engle lab has developed various substrate directivity strategies in which native functional groups can be temporarily masked with auxiliaries that are capable of reversibly binding the metal catalyst, thereby enhancing kinetic reactivity, suppressing unwanted side reactions, and facilitating high selectivity. The Engle lab works with us to make synthetically enabling directing groups, catalysts, and ligands readily available to the synthetic community for reaction discovery and small-molecule synthesis.

The Engle lab strives to invent novel catalytic alkene and alkyne functionalization methods to expedite organic synthesis. These transformations offer a powerful platform for conversion of simple, abundant, and planar starting materials into densely functionalized, stereochemically complex products in a single step. To this end, the Engle lab has developed various substrate directivity strategies in which native functional groups can be temporarily masked with auxiliaries that are capable of reversibly binding the metal catalyst, thereby enhancing kinetic reactivity, suppressing unwanted side reactions, and facilitating high selectivity. The Engle lab works with us to make synthetically enabling directing groups, catalysts, and ligands readily available to the synthetic community for reaction discovery and small-molecule synthesis.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service