Skip to Content
Merck
All Photos(1)

Key Documents

474762

Sigma-Aldrich

Tin(II) chloride dihydrate

≥99.97% trace metals basis

Synonym(s):

Stannous dichloride dihydrate, Stannous chloride dihydrate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
SnCl2 · 2H2O
CAS Number:
Molecular Weight:
225.65
EC Number:
MDL number:
UNSPSC Code:
12161600
PubChem Substance ID:
NACRES:
NA.22
Pricing and availability is not currently available.

Quality Level

Assay

≥99.97% trace metals basis

reaction suitability

core: tin
reagent type: catalyst

bp

652 °C (lit.)

mp

37-38 °C (dec.) (lit.)

SMILES string

O.O.Cl[SnH2]Cl

InChI

1S/2ClH.2H2O.Sn/h2*1H;2*1H2;/q;;;;+2/p-2

InChI key

FWPIDFUJEMBDLS-UHFFFAOYSA-L

Looking for similar products? Visit Product Comparison Guide

Application

Tin(II) chloride dihydrate can be used as a mild Lewis acid catalyst to synthesize:      
  • 3-Aminoimidazo[1,2-a]pyridines via three-component condensation reaction of aromatic aldehydes, 2-aminopyridines, and isonitriles.     
  • Pyrazolo[5,4-b]quinoline derivatives via cyclocondensation reaction of 5-amino-3-(arylamino)-1H-pyrazole-4-carbonitriles with cyclohexane-1,3-dione or dimedone.    
  • Polylactic acid from aqueous lactic acid in the presence of succinic anhydride.

It can also be used as a cocatalyst to synthesize indole derivatives by treating anilines with trialkanolamines in the presence of ruthenium as a catalyst.

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Chronic 3 - Eye Dam. 1 - Met. Corr. 1 - Skin Corr. 1B - Skin Sens. 1 - STOT RE 2 Oral - STOT SE 3

Target Organs

Cardio-vascular system, Respiratory system

Storage Class Code

8B - Non-combustible corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jianfei Huang et al.
ACS nano, 15(1), 1753-1763 (2021-01-14)
Continuously enhanced photoresponsivity and suppressed dark/noise current combinatorially lead to the recent development of high-detectivity organic photodetectors with broadband sensing competence. Despite the achievements, reliable photosensing enabled by organic photodetectors (OPDs) still faces challenges. Herein, we call for heed over
Ji A Hong et al.
ACS applied materials & interfaces, 12(2), 2417-2423 (2019-12-21)
Tin oxide (SnO2) is widely adopted as an electron transport layer in perovskite solar cells (PeSCs) because it has high electron mobility, excellent charge selective behavior owing to a large band gap of 3.76 eV, and low-temperature processibility. To achieve
Xiang-Hui Tan et al.
Organic letters, 5(11), 1833-1835 (2003-05-24)
[reaction: see text] Under the Lewis acid catalysis offered by TiCl(3), SnCl(2) can efficiently mediate the aqueous Barbier reactions between aldehydes and allyl chloride or bromide.
Jonathan J Gridley et al.
Chemical communications (Cambridge, England), (20), 2550-2551 (2003-11-05)
Condensations between the tin(II) enolate 11 of ethyl N-tosylglycinate and conjugated ynals 12 and ynones 14 are highly diastereoselective, in favour of the anti-isomers 13 and 15; similar reactions of enals and enones 17 show lower but still useful levels
Sharp, S.L. et al.
Chemistry of Materials, 10, 880-880 (1998)

Questions

1–2 of 2 Questions  
  1. How is shipping temperature determined? And how is it related to the product storage temperature?

    1 answer
    1. Products may be shipped at a different temperature than the recommended long-term storage temperature. If the product quality is sensitive to short-term exposure to conditions other than the recommended long-term storage, it will be shipped on wet or dry-ice. If the product quality is NOT affected by short-term exposure to conditions other than the recommended long-term storage, it will be shipped at ambient temperature. As shipping routes are configured for minimum transit times, shipping at ambient temperature helps control shipping costs for our customers. For more information, please refer to the Storage and Transport Conditions document: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/316/622/storage-transport-conditions-mk.pdf

      Helpful?

  2. How can I determine the shelf life / expiration / retest date of this product?

    1 answer
    1. If this product has an expiration or retest date, it will be shown on the Certificate of Analysis (COA, CofA). If there is no retest or expiration date listed on the product's COA, we do not have suitable stability data to determine a shelf life. For these products, the only date on the COA will be the release date; a retest, expiration, or use-by-date will not be displayed.
      For all products, we recommend handling per defined conditions as printed in our product literature and website product descriptions. We recommend that products should be routinely inspected by customers to ensure they perform as expected.
      For products without retest or expiration dates, our standard warranty of 1 year from the date of shipment is applicable.
      For more information, please refer to the Product Dating Information document: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/449/386/product-dating-information-mk.pdf

      Helpful?

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service