Skip to Content
Merck
All Photos(4)

Key Documents

156353

Sigma-Aldrich

6-Chloropyridine-3-carboxylic acid

99%

Synonym(s):

6-Chloronicotinic acid

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C6H4ClNO2
CAS Number:
Molecular Weight:
157.55
Beilstein:
115993
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Pricing and availability is not currently available.

Quality Level

Assay

99%

mp

190 °C (dec.) (lit.)

solubility

deionized water: soluble

functional group

carboxylic acid
chloro

SMILES string

OC(=O)c1ccc(Cl)nc1

InChI

1S/C6H4ClNO2/c7-5-2-1-4(3-8-5)6(9)10/h1-3H,(H,9,10)

InChI key

UAWMVMPAYRWUFX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

6-Chloropyridine-3-carboxylic acid (6-chloronicotinic acid/6-CNA) has been used to study its photolytic and photocatalytic degradation. 6-CNA is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid and is known to appear in different environmental matrices.[1] The product has been used as a media component during the isolation of 6-CNA degrading bacterial strain from imidacloprid-exposed soil samples.[2]

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Mahrous M Kandil et al.
Journal of agricultural and food chemistry, 63(19), 4721-4727 (2015-05-02)
Thus far, only a small number and types of bacteria with limited ability in degrading imidacloprid have been reported. Also, genes regulating imidacloprid (IMDA) degradation have yet to be discovered. To study this in more detail, an enrichment technique was
Gretty Ettiene et al.
Electrophoresis, 33(19-20), 2969-2977 (2012-09-22)
A sensitive and reliable method based on MEKC has been developed and validated for trace determination of neonicotinoid insecticides (thiamethoxam, acetamiprid, and imidacloprid) and the metabolite 6-chloronicotinic acid in water and soil matrices. Optimum separation of the neonicotinoid insecticides was
F J Uroz et al.
The Analyst, 126(8), 1355-1358 (2001-09-06)
A new analytical method for determining 6-chloronicotinic acid (6-ClNA) in human urine is proposed. 6-ClNA is the main metabolite in warm-blooded animals after exposure to the insecticide imidachloprid. 6-ClNA was extracted from human urine using solid phase extraction (SPE) with
Romina Zabar et al.
Chemosphere, 85(5), 861-868 (2011-08-02)
This work describes for the first time the photolytic and photocatalytic degradation of 6-chloronicotinic acid (6CNA) in double deionised water, which is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid, and it is known to appear in different environmental
Valéria Guzsvány et al.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 47(12), 1919-1929 (2012-07-05)
Two spectroscopic methods, (1)H NMR and FTIR, were developed for the monitoring of the photocatalytic degradation of acetamiprid, a widely used pyridine-based neonicotinoid insecticide, in UV-irradiated aqueous suspensions of O(2)/TiO(2). The (1)H NMR method allowed also the identification of the

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service