Skip to Content
Merck
All Photos(1)

Key Documents

149470

Sigma-Aldrich

Dimethyl phenylphosphonite

97%

Synonym(s):

Phenyldimethoxyphosphine, Dimethoxyphenylphosphine

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
C6H5P(OCH3)2
CAS Number:
Molecular Weight:
170.15
EC Number:
MDL number:
UNSPSC Code:
12352108
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

97%

form

liquid

reaction suitability

reaction type: Buchwald-Hartwig Cross Coupling Reaction
reaction type: Heck Reaction
reaction type: Hiyama Coupling
reaction type: Negishi Coupling
reaction type: Sonogashira Coupling
reaction type: Stille Coupling
reaction type: Suzuki-Miyaura Coupling

refractive index

n20/D 1.529 (lit.)

density

1.072 g/mL at 25 °C (lit.)

storage temp.

2-8°C

SMILES string

COP(OC)c1ccccc1

InChI

1S/C8H11O2P/c1-9-11(10-2)8-6-4-3-5-7-8/h3-7H,1-2H3

InChI key

LMZLQYYLELWCCW-UHFFFAOYSA-N

Pictograms

Corrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1B

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

235.4 °F - closed cup

Flash Point(C)

113 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Y Shanjani et al.
Biofabrication, 7(4), 045008-045008 (2015-12-20)
Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for
Cancan Xu et al.
ACS applied materials & interfaces, 10(12), 9969-9979 (2018-02-17)
Cell printing is becoming a common technique to fabricate cellularized printed scaffold for biomedical application. There are still significant challenges in soft tissue bioprinting using hydrogels, which requires live cells inside the hydrogels. Moreover, the resilient mechanical properties from hydrogels
Pengrui Wang et al.
Advanced healthcare materials, 9(15), e1900977-e1900977 (2019-11-08)
Growth factors (GFs) are critical components in governing cell fate during tissue regeneration. Their controlled delivery is challenging due to rapid turnover rates in vivo. Functionalized hydrogels, such as heparin-based hydrogels, have demonstrated great potential in regulating GF release. While
Daniel Wangpraseurt et al.
Nature communications, 11(1), 1748-1748 (2020-04-11)
Corals have evolved as optimized photon augmentation systems, leading to space-efficient microalgal growth and outstanding photosynthetic quantum efficiencies. Light attenuation due to algal self-shading is a key limiting factor for the upscaling of microalgal cultivation. Coral-inspired light management systems could
Zhongliang Jiang et al.
Journal of materials chemistry. B, 5(1), 173-180 (2017-01-10)
Cell encapsulation within photopolymerized polyethylene glycol (PEG)-based hydrogel scaffolds has been demonstrated as a robust strategy for cell delivery, tissue engineering, regenerative medicine, and developing in vitro platforms to study cellular behavior and fate. Strategies to achieve spatial and temporal

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service