205532
Zinc oxide
ReagentPlus®, powder, <5 μm particle size, 99.9%
Sign Into View Organizational & Contract Pricing
All Photos(3)
About This Item
Recommended Products
Quality Level
product line
ReagentPlus®
Assay
99.9%
form
powder
particle size
<5 μm
SMILES string
O=[Zn]
InChI
1S/O.Zn
InChI key
XLOMVQKBTHCTTD-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Application
Employed in the preparation of NaZnSiO3OH, a novel chiral framework material which has potential application in ion exchange, adsorption or catalysis.
Employed in the preparation of NaZnSiO3OH, a novel chiral framework material which has potential application in ion exchange, adsorption or catalysis.
Legal Information
ReagentPlus is a registered trademark of Merck KGaA, Darmstadt, Germany
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1
Storage Class Code
11 - Combustible Solids
WGK
WGK 2
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Localized fluorescent complexation enables rapid monitoring of airborne nanoparticles
Environmental science. Nano, 1(4), 358-366 (2014)
Piezoelectric nanogenerators based on zinc oxide nanowire arrays.
Science, 312(5771), 242-246 (2006)
Inorganic chemistry, 38(3), 455-458 (2001-10-25)
The structure of NaZnSiO(3)OH, synthesized hydrothermally by reaction of Na(2)ZnSiO(4) and NaOH, has been determined from single-crystal X-ray and powder neutron diffraction data (orthorhombic, space group P2(1)2(1)2(1,) a = 7.6872(2) Å, b = 9.3899(2) Å, c = 5.155(1) Å, Z
Journal of nanoscience and nanotechnology, 13(7), 5142-5147 (2013-08-02)
Solution processed cathode organic photovoltaic cells (OPVs) utilizing thin layer of ZnO with 27% increase in power conversion efficiency (PCE) to control devices have been demonstrated. Devices without the presence of ZnO layer have much lower PCE than the ones
Journal of nanoscience and nanotechnology, 13(5), 3526-3528 (2013-07-19)
ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service