Skip to Content
Merck
All Photos(1)

Documents

A90004

Sigma-Aldrich

Anthraquinone

97%

Synonym(s):

1,4,11,12-Tetrahydro-9,10-anthraquinone, 9,10-Anthraquinone, Anthracene-9,10-quinone, Anthradione

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C14H8O2
CAS Number:
Molecular Weight:
208.21
Beilstein:
390030
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

vapor density

7.16 (vs air)

vapor pressure

1 mmHg ( 190 °C)

Assay

97%

form

powder

bp

379-381 °C (lit.)

mp

284-286 °C (lit.)

SMILES string

O=C1c2ccccc2C(=O)c3ccccc13

InChI

1S/C14H8O2/c15-13-9-5-1-2-6-10(9)14(16)12-8-4-3-7-11(12)13/h1-8H

InChI key

RZVHIXYEVGDQDX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Anthraquinone (AQ) can be used:
  • In the synthesis of water-soluble anthraquinone derivatives such as 9,10-anthraquinone-2,6-disulfonic acid, disodium salt (AQ-2,6) and 9,10-anthraquinone-2-sulfonic acid, monosodium salt (AQ-2). These AQ derivatives are useful as redox catalysts for aeration in Becher process.
  • As an indicator to determine the acid strength of poly(4-vinylpyridinium) hydrogen sulfate (P(4-VPH)HSO4) catalyst.
  • As a pulping catalyst.

Pictograms

Health hazardExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Carc. 1B - Skin Sens. 1

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 1

Flash Point(F)

482.0 °F - closed cup

Flash Point(C)

250 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

The application of anthraquinone redox catalysts for accelerating the aeration step in the becher process.
Bruckard WJ, et al.
Hydrometallurgy, 73(1-2), 111-121 (2004)
Anthraquinone-A review of the rise and fall of a pulping catalyst.
Hart PW and Rudie AW
Tappi Journal, 13(10), 23-31 (2014)
Preparation, characterization and use of poly (4-vinylpyridinium) hydrogen sulfate salt as an eco-benign, efficient and reusable solid acid catalyst for the chemoselective 1, 1-diacetate protection and deprotection of aldehydes.
Khaligh NG and Shirini F
J. Mol. Catal. A: Chem., 348(1-2), 20-29 (2011)
Emilio M Ungerfeld et al.
Microorganisms, 8(6) (2020-05-30)
Ameliorating methane (CH4) emissions from ruminants would have environmental benefits, but it is necessary to redirect metabolic hydrogen ([H]) toward useful sinks to also benefit animal productivity. We hypothesized that inhibiting rumen methanogenesis would increase de novo synthesis of microbial
Witold Nowik et al.
Journal of chromatography. A, 1218(23), 3636-3647 (2011-05-03)
A series of reversed phases bonded with several functional groups was investigated for separation of anthraquinone derivatives, following the previous work, dedicated to the selectivity of octadecyl silica bonded phases. Considering wide diversity of substitutions in hydrophobic anthraquinone skeleton, interactions

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service