Skip to Content
Merck
All Photos(2)

Key Documents

932027

Sigma-Aldrich

9,10-Dihydro-9,9-dimethyl-10- (9-phenyl-9H-carbazol-3-yl)-acridine

≥99% (HPLC)

Synonym(s):

P-CzAc

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C33H26N2
CAS Number:
Molecular Weight:
450.57
UNSPSC Code:
41106305
NACRES:
NA.23

grade

sublimed grade

Quality Level

Assay

≥99% (HPLC)

solubility

chloroform: soluble
dibromomethane: soluble
toluene: soluble

Orbital energy

HOMO 5.7 eV 
LUMO 2.5 eV 

Application

9,10-Dihydro-9,9-dimethyl-10- (9-phenyl-9H-carbazol-3-yl)-acridine, also known as P-CzAc, is a Hole Transport / Electron Blocking Layer (HTL / EBL) polymer used in organic electronics, such as for solution-processed light emitting diodes (LEDs). Eg: green quantum dot light-emitting diodes (QD-LEDs).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A novel molecular design employing a backbone freezing linker for improved efficiency, sharpened emission and long lifetime in thermally activated delayed fluorescence emitters.
Yu J G, et al.
Journal of Material Chemistry C, 7, 2919-2926 (2019)
High triplet energy exciplex host derived from a CN modified carbazole based n-type host for improved efficiency and lifetime in blue phosphorescent organic light-emitting diodes.
Shin K S, et al.
Journal of Material Chemistry C, 6, 10308-10314 (2018)
Novel carbazole-acridine-based hole transport polymer for low turn-on voltage of green quantum dot light-emitting diodes.
Kim W C, et al.
Polym. Chem., 12, 4714-4721 (2021)
Long lifetime blue phosphorescent organic light emitting diodes with an exciton blocking layer.
Seo J A, et al.
Journal of Material Chemistry C, 3, 4640-4645 (2015)
Efficiency enhancement in fluorescent deep-blue OLEDs by boosting singlet exciton generation through triplet fusion and charge recombination rate.
Bae H, et al.
Organic Electronics, 70, 1-6 (2019)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service