Skip to Content
Merck
All Photos(1)

Documents

218472

Sigma-Aldrich

Tetramethyl orthosilicate

98%

Synonym(s):

Tetramethoxysilane

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Si(OCH3)4
CAS Number:
Molecular Weight:
152.22
Beilstein:
1699658
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

vapor density

5.25 (vs air)

vapor pressure

13 hPa ( 20 °C)

Assay

98%

form

liquid

refractive index

n20/D 1.368 (lit.)

bp

121-122 °C (lit.)

mp

−4 °C (lit.)

density

1.023 g/mL at 25 °C (lit.)

SMILES string

CO[Si](OC)(OC)OC

InChI

1S/C4H12O4Si/c1-5-9(6-2,7-3)8-4/h1-4H3

InChI key

LFQCEHFDDXELDD-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Tetramethyl orthosilicate (TMOS) is popularly used in the sol-gel synthesis of silicates1 and chromium-doped silicates and in the formation of hexagonal mesoporous silica layers.
Used in the sol-gel synthesis of chromium-doped silicates and in the formation of hexagonal mesoporous silica layers.

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 1 Inhalation - Eye Dam. 1 - Flam. Liq. 3 - Skin Irrit. 2

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

78.8 °F - closed cup

Flash Point(C)

26 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Zian Lin et al.
Chemical communications (Cambridge, England), 47(34), 9675-9677 (2011-07-30)
An inorganic-organic hybrid affinity monolithic column was synthesized by a novel "one-pot" approach. The resulting hybrid affinity monoliths have potential applications in specific recognition and enrichment of glycoproteins.
Stephan Altmaier et al.
Journal of separation science, 31(14), 2551-2559 (2008-07-12)
Silica-based monolithic columns were prepared for HPLC with systematic variations of the tetramethoxysilane (TMOS) and polyethylene oxide (PEO) content as reactants in a sol-gel process accompanied by phase separation. The resulting monoliths showed differences in the macropore and silica skeleton
Carmen Carrasquilla et al.
Journal of the American Chemical Society, 134(26), 10998-11005 (2012-06-26)
Structure-switching, fluorescence-signaling DNA and RNA aptamers have been reported as highly versatile molecular recognition elements for biosensor development. While structure-switching DNA aptamers have been utilized for solid-phase sensing, equivalent RNA aptamers have yet to be successfully utilized in solid-phase sensors
Shota Miyazaki et al.
Journal of chromatography. A, 1218(15), 1988-1994 (2010-12-24)
Chromatographic properties of a new type of monolithic silica rod columns were examined. Silica rod columns employed for the study were prepared from tetramethoxysilane, modified with octadecylsilyl moieties, and encased in a stainless-steel protective column with two polymer layers between
Yan Fang et al.
Journal of chromatography. A, 1217(41), 6405-6412 (2010-09-03)
A simple capillary flow porometer (CFP) was assembled for through-pore structure characterization of monolithic capillary liquid chromatography columns in their original chromatographic forms. Determination of differential pressures and flow rates through dry and wet short capillary segments provided necessary information

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service