Accéder au contenu
Merck

Monoamine Oxidase and Dopamine β-Hydroxylase Inhibitors from the Fruits of Gardenia jasminoides.

Biomolecules & therapeutics (2012-03-01)
Ji Ho Kim, Gun Hee Kim, Keum Hee Hwang
RÉSUMÉ

This research was designed to determine what components of Gardenia jasminoides play a major role in inhibiting the enzymes related antidepressant activity of this plant. In our previous research, the ethyl acetate fraction of G. jasminosides fruits inhibited the activities of both monoamine oxidase-A (MAO-A) and monoamine oxidase-B (MAO-B), and oral administration of the ethanolic extract slightly increased serotonin concentrations in the brain tissues of rats and decreased MAO-B activity. In addition, we found through in vitro screening test that the ethyl acetate fraction showed modest inhibitory activity on dopamine-β hydroxylase (DBH). The bioassay-guided fractionation led to the isolation of five bio-active compounds, protocatechuic acid (1), geniposide (2), 6'-O-trans-p-coumaroylgeniposide (3), 3,5-d-ihydroxy-1,7-bis (4-hydroxyphenyl) heptanes (4), and ursolic acid (5), from the ethyl acetate fraction of G. jasminoides fruits. The isolated compounds showed different inhibitory potentials against MAO-A, -B, and DBH. Protocatechuic acid showed potent inhibition against MAO-B (IC50 300 μmol/L) and DBH (334 μmol/L), exhibiting weak MAO-A inhibition (2.41 mmol/L). Two iridoid glycosides, geniposide (223 μmol/L) and 6'-O-trans-p-coumaroylgeniposide (127μmol/L), were selective MAO-B inhibitor. Especially, 6'-O-trans-p-coumaroylgeniposide exhibited more selective MAO-B inhibition than deprenyl, well-known MAO-B inhibitor for the treatment of early-stage Parkinson's disease. The inhibitory activity of 3,5-di-hydroxy-1,7-bis (4-hydroxyphenyl) heptane was strong for MAO-B (196 μmol/L), modest for MAO-A (400 μmol/L), and weak for DBH (941 μmol/L). Ursolic acid exhibited significant inhibition of DBH (214 μmol/L), weak inhibition of MAO-B (780 μmol/L), and no inhibition against MAO-A. Consequently, G. jasminoides fruits are considerable for development of biofunctional food materials for the combination treatment of depression and neurodegenerative disorders.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Amberlite CG50, macroreticular