Accéder au contenu
Merck
  • Analysis of Five Gene Sets in Chimpanzees Suggests Decoupling between the Action of Selection on Protein-Coding and on Noncoding Elements.

Analysis of Five Gene Sets in Chimpanzees Suggests Decoupling between the Action of Selection on Protein-Coding and on Noncoding Elements.

Genome biology and evolution (2015-05-16)
Gabriel Santpere, Elena Carnero-Montoro, Natalia Petit, François Serra, Christina Hvilsom, Jordi Rambla, Jose Maria Heredia-Genestar, Daniel L Halligan, Hernan Dopazo, Arcadi Navarro, Elena Bosch
RÉSUMÉ

We set out to investigate potential differences and similarities between the selective forces acting upon the coding and noncoding regions of five different sets of genes defined according to functional and evolutionary criteria: 1) two reference gene sets presenting accelerated and slow rates of protein evolution (the Complement and Actin pathways); 2) a set of genes with evidence of accelerated evolution in at least one of their introns; and 3) two gene sets related to neurological function (Parkinson's and Alzheimer's diseases). To that effect, we combine human-chimpanzee divergence patterns with polymorphism data obtained from target resequencing 20 central chimpanzees, our closest relatives with largest long-term effective population size. By using the distribution of fitness effect-alpha extension of the McDonald-Kreitman test, we reproduce inferences of rates of evolution previously based only on divergence data on both coding and intronic sequences and also obtain inferences for other classes of genomic elements (untranslated regions, promoters, and conserved noncoding sequences). Our results suggest that 1) the distribution of fitness effect-alpha method successfully helps distinguishing different scenarios of accelerated divergence (adaptation or relaxed selective constraints) and 2) the adaptive history of coding and noncoding sequences within the gene sets analyzed is decoupled.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Tin, ≥99%, powder
Sigma-Aldrich
Tin, powder, <150 μm, 99.5% trace metals basis
Sigma-Aldrich
Tin, powder, <45 μm particle size, 99.8% trace metals basis
Sigma-Aldrich
Tin, powder, -100 mesh, 99.99% trace metals basis
Sigma-Aldrich
Tin, nanopowder, <150 nm particle size (SEM), ≥99% trace metals basis
Sigma-Aldrich
Tin, powder, 10 μm, 99% trace metals basis
Sigma-Aldrich
Tin, shot, 99.999% trace metals basis
Sigma-Aldrich
Tin, foil, thickness 0.127 mm, 99.9%
Sigma-Aldrich
Tin, foil, thickness 0.5 mm, 99.998% trace metals basis
Sigma-Aldrich
Tin, 99.8%, shot, 3 mm
Sigma-Aldrich
Tin, granular, 0.425-2.0 mm particle size, ≥99.5%, ACS reagent
Tin, rod, 50mm, diameter 6.0mm, 99.999+%
Sigma-Aldrich
Tin, wire, diam. 0.5 mm, 99.999% trace metals basis
Tin, foil, 5m coil, thickness 0.0125mm, 97.4%
Tin, foil, 25x25mm, thickness 0.25mm, as rolled, 99.99+%
Tin, foil, 25x25mm, thickness 0.15mm, as rolled, 99.99+%
Tin, rod, 100mm, diameter 3.0mm, 99.99+%
Tin, foil, 1m coil, thickness 0.075mm, as rolled, 98.8%
Tin, foil, 100x100mm, thickness 0.25mm, as rolled, 99.99+%
Tin, foil, 150x150mm, thickness 0.1mm, as rolled, 99.95%
Tin, rod, 100mm, diameter 9.5mm, 99.75%
Tin, foil, 300x300mm, thickness 0.25mm, as rolled, 98.8%
Tin, rod, 500mm, diameter 9.5mm, 99.75%
Tin, foil, 25x25mm, thickness 0.5mm, as rolled, 99.99+%
Tin, foil, 300x300mm, thickness 0.1mm, as rolled, 99.95%
Tin, rod, 100mm, diameter 6.0mm, 99.999+%
Tin, foil, 25x25mm, thickness 0.1mm, as rolled, 99.95%
Tin, rod, 500mm, diameter 3.0mm, 99.99+%
Tin, foil, 100x100mm, thickness 0.25mm, as rolled, 98.8%
Tin, foil, not light tested, 150x150mm, thickness 0.007mm, 97.4%