Accéder au contenu
Merck

Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus.

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology (2014-02-13)
Melody V Wu, Jul Lea Shamy, Gillinder Bedi, Chien-Wen J Choi, Melanie M Wall, Victoria Arango, Maura Boldrini, Richard W Foltin, René Hen
RÉSUMÉ

Adult hippocampal neurogenesis is critically implicated in rodent models of stress and anxiety as well as behavioral effects of antidepressants. Whereas similar factors such as psychiatric disorder and antidepressant administration are correlated with hippocampal volume in humans, the relationship between these factors and adult neurogenesis is less well understood. To better bridge the gap between rodent and human physiology, we examined the numbers of proliferating neural precursors and immature cells in the hippocampal dentate gyrus (DG) as well as in vivo magnetic resonance imaging (MRI)-estimated whole hippocampal volume in eight socially dominant- or subordinate-like (SL) baboons administered the antidepressant fluoxetine or vehicle. SL baboons had lower numbers of proliferating cells and immature neurons than socially dominant-like baboons. Fluoxetine treatment was associated with a larger whole hippocampal volume but surprisingly resulted in lower numbers of immature neurons. These findings are the first to indicate that adult neurogenesis in the baboon hippocampal DG may be functionally relevant in the context of social stress and mechanisms of antidepressant action.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Fluoxétine hydrochloride, solid
Sigma-Aldrich
5-bromo-2′-désoxyuridine, BioUltra, ≥99%
USP
Fluoxétine hydrochloride, United States Pharmacopeia (USP) Reference Standard
Supelco
Fluoxétine hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Fluoxétine hydrochloride, VETRANAL®, analytical standard