Accéder au contenu
Merck

Differential effects of ethanol on bid, tBid, and Bax:tBid interactions in postnatal day 4 and postnatal day 7 rat cerebellum.

Alcoholism, clinical and experimental research (2015-01-28)
Marieta B Heaton, Michael Paiva, Stacey Kubovec
RÉSUMÉ

Exposure to ethanol (EtOH) during central nervous system (CNS) development can lead to a wide array of neuroanatomical, behavioral, and cognitive abnormalities, broadly subsumed under the fetal alcohol spectrum disorder classification. One mode of EtOH-induced interference in the normal developmental program appears to be through induction of apoptotic processes mediated by the Bcl-2 family of survival-regulatory proteins. The present series of studies investigated the role of the Bcl-2-related, pro-apoptotic Bid protein, and its truncated, apoptotically active fragment, tBid, in developmental EtOH neurotoxicity. Protein analyses were made via enzyme-linked immunosorbent assays (ELISA) in neonatal rat cerebellum, of basal Bid, and of Bid and tBid, following EtOH exposure via vapor inhalation, at an age of peak EtOH sensitivity in this region (postnatal day 4 [P4]) and a later age of relative resistance (P7). ELISA analyses were also made of Bax:tBid heterodimers, a process which activates Bax, essential for its apoptotic functioning. Finally, in vitro assessments of the importance of tBid to EtOH neurotoxicity were made in cultured cerebellar granule cells, using a specific tBid inhibitor. Basal levels of Bid were higher at P4 compared to P7, possibly contributing to the differential sensitivity. EtOH exposure elicited further increases in cytosolic Bid and mitochondrial tBid when administration was at P4, but not at P7. Bax:tBid heterodimers were markedly increased by EtOH exposure on P4, an increase which persisted even 2 hours after termination of treatment. Similar effects were not seen at P7. The in vitro analyses revealed that tBid inhibition provided complete protection against EtOH-induced cell death and depressed EtOH-mediated cytochrome-c release. These results suggest that Bid/tBid may be important elements in EtOH-mediated neurotoxicity during CNS development. The molecular processes and interactions revealed may represent critical points which can be targeted in studies concerned with designing possible therapeutic strategies for minimizing these devastative effects.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Bleu de thiazol (thiazolyl blue tetrazolium bromide), 98%
Sigma-Aldrich
Bleu de thiazol (thiazolyl blue tetrazolium bromide), powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
Éthanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Éthanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Éthanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Éthanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
USP
Éthanol, United States Pharmacopeia (USP) Reference Standard
Supelco
Éthanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Éthanol, for residue analysis
Sigma-Aldrich
Éthanol, tested according to Ph. Eur.
Sigma-Aldrich
Boron-11B, 95 atom % 11B
Sigma-Aldrich
BI-6C9, ≥97% (HPLC), solid