Accéder au contenu
Merck
  • Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones.

Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones.

Water research (2014-08-05)
Jiaqi Liu, Xiangru Zhang
RÉSUMÉ

Using seawater for toilet flushing effectively reduces the consumption of precious freshwater resources, yet it introduces bromide and iodide ions into a wastewater treatment system, which may form bromo- and iodo-disinfection byproducts (DBPs) during chlorination of the wastewater effluent. Most of the newly identified DBPs in chlorinated wastewater effluents were halophenolic compounds. It has been reported that the newly identified bromo- and iodo-phenolic DBPs were generally significantly more toxic to a heterotrophic marine polychaete than the commonly known haloacetic acids and trihalomethanes. This has raised a concern over the discharge of chlorinated saline wastewater effluents into the marine ecosystem. In this study, the toxicity of new halophenolic DBPs and some haloaliphatic DBPs was tested against an autotrophic marine alga, Tetraselmis marina. The alga and polychaete bioassays gave the same toxicity orders for many groups of halo-DBPs. New halophenolic DBPs also showed significantly higher toxicity to the alga than the commonly known haloacetic acids, indicating that the emerging halophenolic DBPs deserve more attention. However, two bioassays did exhibit a couple of disparities in toxicity results, mainly because the alga was capable of metabolizing some (nitrogenous) halophenolic DBPs. A quantitative structure-toxicity relationship was developed for the halophenolic DBPs, by employing three physicochemical descriptors (log K(ow), pKa and molar topological index). This relationship presented the toxicity mechanism of the halophenolic DBPs to T. marina and gave a good prediction of the algal toxicity of the tested halophenolic DBPs.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
tert-Butyl méthyl éther, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
tert-Butyl méthyl éther, ACS reagent, ≥99.0%
Sigma-Aldrich
Acétonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
tert-Butyl méthyl éther, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
tert-Butyl méthyl éther, reagent grade, ≥98%
Sigma-Aldrich
Acétonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acétonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acétonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
tert-Butyl méthyl éther, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Acétonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acétonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acétonitrile, electronic grade, 99.999% trace metals basis
Supelco
Acétonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
tert-Butyl méthyl éther, reagent grade, 98%
Sigma-Aldrich
Acétonitrile, ≥99.5% (GC)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Supelco
Acétonitrile, analytical standard
Supelco
tert-Butyl méthyl éther, analytical standard
Sigma-Aldrich
Acétonitrile, for preparative HPLC, ≥99.8% (GC)
Supelco
tert-Butyl méthyl éther, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acétonitrile
Supelco
Acétonitrile, Pharmaceutical Secondary Standard; Certified Reference Material