Accéder au contenu
Merck

Molecular architecture of the ErbB2 extracellular domain homodimer.

Oncotarget (2015-01-31)
Shi Hu, Yuna Sun, Yanchun Meng, Xiaoze Wang, Weili Yang, Wenyan Fu, Huaizu Guo, Weizhu Qian, Sheng Hou, Bohua Li, Zihe Rao, Zhiyong Lou, Yajun Guo
RÉSUMÉ

Human epidermal growth factor receptors (HERs or ErbBs) play crucial roles in numerous cellular processes. ErbB2 is a key member of ErbB family, and its overexpression is recognized as a frequent molecular abnormality. In cancer, this overexpression correlates with aggressive disease and poor patient outcomes. Dimer-dependent phosphorylation is a key event for the signal transduction of ErbBs. However, the molecular mechanism of the dimerization of ErbB2 remains elusive. In the present work, we report the homodimer architecture of the ErbB2 extracellular domain (ECD) which is unique compared with other dimer-models of ErbBs. The structure of the ErbB2 ECD homodimer represents a "back to head" interaction, in which a protruding β-hairpin arm in domain II of one ErbB2 protomer is inserted into a C-shaped pocket created by domains I-III of the adjacent ErbB2 protomer. This dimerized architecture and its impact on the phosphorylation of ErbB2 intracellular domain were further verified by a mutagenesis study. We also elucidated the different impacts of two clinically administered therapeutic antibodies, trastuzumab and pertuzumab, on ErbB2 dimerization. This information not only provides an understanding of the molecular mechanism of ErbBs dimerization but also elucidates ErbB2-targeted therapy at the molecular level.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétate d′ammonium, ACS reagent, ≥97%
Sigma-Aldrich
Anticorps monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Acétate d′ammonium, ≥99.99% trace metals basis
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
Acétate d′ammonium, for molecular biology, ≥98%
Sigma-Aldrich
Acétate d′ammonium solution, for molecular biology, 7.5 M
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
SAFC
BIS-TRIS
Supelco
Acétate d′ammonium, LiChropur, eluent additive for LC-MS
Sigma-Aldrich
Acétate d′ammonium, 99.999% trace metals basis
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
Acétate d′ammonium, reagent grade, ≥98%
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
SAFC
BIS-TRIS
Sigma-Aldrich
Acétate d′ammonium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Acétate d′ammonium, BioXtra, ≥98%
Sigma-Aldrich
Acétate d′ammonium, BioUltra, for molecular biology, ≥99.0%
Sigma-Aldrich
DL-Tyrosine, 99%
Supelco
L-Lysine monohydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
L-Tyrosine, European Pharmacopoeia (EP) Reference Standard
Lysine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Lysine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Supelco
L-Lysine monohydrochloride, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland