Accéder au contenu
Merck

A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive genes.

The Journal of biological chemistry (2012-05-17)
Milu T Cherian, Elizabeth M Wilson, David J Shapiro
RÉSUMÉ

The androgen receptor (AR) has a critical role in the growth and progression of androgen-dependent and castration-resistant prostate cancers. To identify novel inhibitors of AR transactivation that block growth of prostate cancer cells, a luciferase-based high-throughput screen of ~160,000 small molecules was performed in cells stably expressing AR and a prostate-specific antigen (PSA)-luciferase reporter. CPIC (1-(3-(2-chlorophenoxy) propyl)-1H-indole-3-carbonitrile) was identified as a small molecule that blocks AR transactivation to a greater extent than other steroid receptors. CPIC inhibited AR-mediated proliferation of androgen-sensitive prostate cancer cell lines, with minimal toxicity in AR-negative cell lines. CPIC treatment also reduced the anchorage-independent growth of LAPC-4 prostate cancer cells. CPIC functioned as a pure antagonist by inhibiting the expression of AR-regulated genes in LAPC-4 cells that express wild-type AR and exhibited weak agonist activity in LNCaP cells that express the mutant AR-T877A. CPIC treatment did not reduce AR levels or alter its nuclear localization. We used chromatin immunoprecipitation to identify the site of action of CPIC. CPIC inhibited recruitment of androgen-bound AR to the PSA promoter and enhancer sites to a greater extent than bicalutamide. CPIC is a new therapeutic inhibitor that targets AR-mediated gene activation with potential to arrest the growth of prostate cancer.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps monoclonal anti-βactine, souris, clone AC-15, purified from hybridoma cell culture
Roche
Insulin-Transferrin-Sodium Selenite Supplement, suitable for cell culture, lyophilized, pkg of 50 mg (for 5 l medium)
Sigma-Aldrich
R1881, ≥98% (HPLC)
Sigma-Aldrich
Anticorps anti-ARN polymérase II, clone CTD4H8, clone CTD4H8, Upstate®, from mouse