Accéder au contenu
Merck

Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinson-Gilford Progeria syndrome.

Aging cell (2021-08-29)
Wayne A Cabral, Urraca L Tavarez, Indeevar Beeram, Diana Yeritsyan, Yoseph D Boku, Michael A Eckhaus, Ara Nazarian, Michael R Erdos, Francis S Collins
RÉSUMÉ

Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder most notably characterized by cardiovascular disease and premature death from myocardial infarction or stroke. The majority of cases are caused by a de novo single nucleotide mutation in the LMNA gene that activates a cryptic splice donor site, resulting in production of a toxic form of lamin A with a 50 amino acid internal deletion, termed progerin. We previously reported the generation of a transgenic murine model of progeria carrying a human BAC harboring the common mutation, G608G, which in the single-copy state develops features of HGPS that are limited to the vascular system. Here, we report the phenotype of mice bred to carry two copies of the BAC, which more completely recapitulate the phenotypic features of HGPS in skin, adipose, skeletal, and vascular tissues. We further show that genetic reduction of the mechanistic target of rapamycin (mTOR) significantly extends lifespan in these mice, providing a rationale for pharmacologic inhibition of the mTOR pathway in the treatment of HGPS.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Cocktail d'inhibiteurs de protéases, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
Caspase Inhibitor VI, Z-VAD-FMK, CAS 161401-82-7, is an irreversible pan caspase inhibitor. Does not require pretreatment with esterase for in vitro studies.