Accéder au contenu
Merck

MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK.

Oncogene (2020-12-10)
Youjin Na, Ashley Hall, Kwangmin Choi, Liang Hu, Jonathan Rose, Robert A Coover, Adam Miller, Robert F Hennigan, Eva Dombi, Mi-Ok Kim, Subbaya Subramanian, Nancy Ratner, Jianqiang Wu
RÉSUMÉ

MicroRNAs (miRs) are small non-coding RNAs that can have large impacts on oncogenic pathways. Possible functions of dysregulated miRs have not been studied in neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNFs). In PNFs, Schwann cells (SCs) have biallelic NF1 mutations necessary for tumorigenesis. We analyzed a miR microarray comparing with normal and PNF SCs and identified differences in miR expression, and we validated in mouse PNFs versus normal mouse SCs by qRT-PCR. Among these, miR-155 was a top overexpressed miR, and its expression was regulated by RAS/MAPK signaling. Overexpression of miR-155 increased mature Nf1-/- mouse SC proliferation. In SC precursors, which model tumor-initiating cells, pharmacological and genetic inhibition of miR-155 decreased PNF-derived sphere numbers in vitro, and we identified Maf as a miR-155 target. In vivo, global deletion of miR-155 significantly decreased tumor number and volume, increasing mouse survival. Fluorescent nanoparticles entered PNFs, suggesting that an anti-miR might have therapeutic potential. However, treatment of established PNFs using anti-miR-155 peptide nucleic acid-loaded nanoparticles marginally decreased tumor numbers and did not reduce tumor growth. These results suggest that miR-155 plays a functional role in PNF growth and/or SC proliferation, and that targeting neurofibroma miRs is feasible, and might provide novel therapeutic opportunities.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Roche
Dispase® II (protéase neutre, type II), lyophilized, from bacterial, Roche, pkg of 5 × 1 g
Roche
Kit de détection in situ de la mort cellulaire, rouge TMR, sufficient for ≤50 tests
Sigma-Aldrich
Héparine sodium salt from porcine intestinal mucosa, Grade I-A, ≥180 USP units/mg, powder, BioReagent, suitable for cell culture