Accéder au contenu
Merck

Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids.

EMBO molecular medicine (2021-01-28)
Cleber A Trujillo, Jason W Adams, Priscilla D Negraes, Cassiano Carromeu, Leon Tejwani, Allan Acab, Ben Tsuda, Charles A Thomas, Neha Sodhi, Katherine M Fichter, Sarah Romero, Fabian Zanella, Terrence J Sejnowski, Henning Ulrich, Alysson R Muotri
RÉSUMÉ

Duplication or deficiency of the X-linked MECP2 gene reliably produces profound neurodevelopmental impairment. MECP2 mutations are almost universally responsible for Rett syndrome (RTT), and particular mutations and cellular mosaicism of MECP2 may underlie the spectrum of RTT symptomatic severity. No clinically approved treatments for RTT are currently available, but human pluripotent stem cell technology offers a platform to identify neuropathology and test candidate therapeutics. Using a strategic series of increasingly complex human stem cell-derived technologies, including human neurons, MECP2-mosaic neurospheres to model RTT female brain mosaicism, and cortical organoids, we identified synaptic dysregulation downstream from knockout of MECP2 and screened select pharmacological compounds for their ability to treat this dysfunction. Two lead compounds, Nefiracetam and PHA 543613, specifically reversed MECP2-knockout cytologic neuropathology. The capacity of these compounds to reverse neuropathologic phenotypes and networks in human models supports clinical studies for neurodevelopmental disorders in which MeCP2 deficiency is the predominant etiology.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-NeuN, clone A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
Anti-MeCP2 antibody, Mouse monoclonal, clone Men-8, purified from hybridoma cell culture
Sigma-Aldrich
Anticorps anti-synapsine I, Chemicon®, from rabbit
Sigma-Aldrich
Nefiracetam, solid
Sigma-Aldrich
PHA-543613, ≥98% (HPLC)