Accéder au contenu
Merck

Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET.

Biochimica et biophysica acta. Bioenergetics (2019-12-12)
Marten Szibor, Timur Gainutdinov, Erika Fernandez-Vizarra, Eric Dufour, Zemfira Gizatullina, Grazyna Debska-Vielhaber, Juliana Heidler, Ilka Wittig, Carlo Viscomi, Frank Gellerich, Anthony L Moore
RÉSUMÉ

Electron transfer from all respiratory chain dehydrogenases of the electron transport chain (ETC) converges at the level of the quinone (Q) pool. The Q redox state is thus a function of electron input (reduction) and output (oxidation) and closely reflects the mitochondrial respiratory state. Disruption of electron flux at the level of the cytochrome bc1 complex (cIII) or cytochrome c oxidase (cIV) shifts the Q redox poise to a more reduced state which is generally sensed as respiratory stress. To cope with respiratory stress, many species, but not insects and vertebrates, express alternative oxidase (AOX) which acts as an electron sink for reduced Q and by-passes cIII and cIV. Here, we used Ciona intestinalis AOX xenotopically expressed in mouse mitochondria to study how respiratory states impact the Q poise and how AOX may be used to restore respiration. Particularly interesting is our finding that electron input through succinate dehydrogenase (cII), but not NADH:ubiquinone oxidoreductase (cI), reduces the Q pool almost entirely (>90%) irrespective of the respiratory state. AOX enhances the forward electron transport (FET) from cII thereby decreasing reverse electron transport (RET) and ROS specifically when non-phosphorylating. AOX is not engaged with cI substrates, however, unless a respiratory inhibitor is added. This sheds new light on Q poise signaling, the biological role of cII which enigmatically is the only ETC complex absent from respiratory supercomplexes but yet participates in the tricarboxylic acid (TCA) cycle. Finally, we delineate potential risks and benefits arising from therapeutic AOX transfer.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Antimycine A from Streptomyces sp.
Sigma-Aldrich
Adénosine 5′-diphosphate sodium salt, bacterial, ≥95% (HPLC)
Sigma-Aldrich
Pyruvate de sodium, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Cyanure de 4-(trifluorométhoxy)phénylhydrazone carbonyle, ≥98% (TLC), powder
Sigma-Aldrich
Roténone, ≥95%
Sigma-Aldrich
Peroxydase from horseradish, Type II, essentially salt-free, lyophilized powder, 150-250 units/mg solid (using pyrogallol)
Sigma-Aldrich
Oligomycine from Streptomyces diastatochromogenes, ≥90% total oligomycins basis (HPLC)
Sigma-Aldrich
DL-Dithiothréitol, ≥99.0% (RT)
Sigma-Aldrich
Conjugué anticorps anti-IgG de lapin (molécule entière)-peroxydase antibody produced in goat, affinity isolated antibody
Sigma-Aldrich
Azoture de sodium, ReagentPlus®, ≥99.5%
Sigma-Aldrich
L-Glutamic acid monosodium salt monohydrate, ≥98.0% (NT)
Sigma-Aldrich
Propyl gallate, powder
Sigma-Aldrich
Protéinase, bactérienne, Type XXIV, 7.0-14.0 units/mg solid, lyophilized powder
Sigma-Aldrich
L-(−)-Malic acid, ≥95% (titration)
Sigma-Aldrich
D-Mannitol, ≥98% (GC)
Sigma-Aldrich
Adenosine 5′-diphosphate, ≥95% (HPLC)
Sigma-Aldrich
Acide éthylène glycol-bis(2-aminoéthyléther)-N,N,N′,N′-tétraacétique, ≥97.0%
Sigma-Aldrich
Sodium succinate dibasic hexahydrate, ReagentPlus®, ≥99%
Sigma-Aldrich
Safranine O, Dye content ≥85 %
Sigma-Aldrich
Superoxide Dismutase from bovine liver, ammonium sulfate suspension, 2,000-6,000 units/mg protein (biuret)
Supelco
[(3R)-3-Hydroxytetradecanoyl]-L-carnitine, analytical standard