Accéder au contenu
Merck

Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-indeuced M2a-subtype macrophage activation in obesity.

Nature communications (2018-11-20)
Tetsuya Kubota, Mariko Inoue, Naoto Kubota, Iseki Takamoto, Tomoka Mineyama, Kaito Iwayama, Kumpei Tokuyama, Masao Moroi, Kohjiro Ueki, Toshimasa Yamauchi, Takashi Kadowaki
RÉSUMÉ

M2a-subtype macrophage activation is known to be impaired in obesity, although the underlying mechanisms remain poorly understood. Herein, we demonstrate that, the IL-4/Irs2/Akt pathway is selectively impaired, along with decreased macrophage Irs2 expression, although IL-4/STAT6 pathway is maintained. Indeed, myeloid cell-specific Irs2-deficient mice show impairment of IL-4-induced M2a-subtype macrophage activation, as a result of stabilization of the FoxO1/HDAC3/NCoR1 corepressor complex, resulting in insulin resistance under the HF diet condition. Moreover, the reduction of macrophage Irs2 expression is mediated by hyperinsulinemia via the insulin receptor (IR). In myeloid cell-specific IR-deficient mice, the IL-4/Irs2 pathway is preserved in the macrophages, which results in a reduced degree of insulin resistance, because of the lack of IR-mediated downregulation of Irs2. We conclude that downregulation of Irs2 in macrophages caused by hyperinsulinemia is responsible for systemic insulin resistance via impairment of M2a-subtype macrophage activation in obesity.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps monoclonal anti-β-actine antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anticorps anti-phosphotyrosine, clone 4G10®, clone 4G10®, Upstate®, from mouse
Sigma-Aldrich
Anticorps anti-IRS1, Upstate®, from rabbit
Sigma-Aldrich
Anti-IRS-2 Antibody, clone 9.5.2, clone 9.5.2, from mouse
Sigma-Aldrich
Anti-phospho-STAT6 (Tyr641) Antibody, Upstate®, from rabbit