Accéder au contenu
Merck
Toutes les photos(1)

Key Documents

940143

Sigma-Aldrich

Copper(II) nitrate trihydrate

new

≥99.9% trace metals basis

Synonyme(s) :

Copper dinitrate trihydrate, Copper(2+) nitrate trihydrate, Cupric nitrate trihydrate

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
Cu(NO3)2 · 3H2O
Numéro CAS:
Poids moléculaire :
241.60
Code UNSPSC :
12141711

Niveau de qualité

Pureté

(iodometric, redox titration)
≥99.9% trace metals basis

Forme

(Crystal or Powder)

Solubilité

water: soluble

Traces d'anions

chloride (Cl-): ≤20 ppm
sulfate (SO42-): ≤50 ppm

Traces de cations

Al: ≤10 ppm
Ca: ≤10 ppm
Cd: ≤10 ppm
Cr: ≤10 ppm
Fe: ≤10 ppm
K: ≤10 ppm
Mg: ≤10 ppm
Mn: ≤10 ppm
Na: ≤30 ppm
Ni: ≤10 ppm
Pb: ≤10 ppm
Si: ≤10 ppm
Zn: ≤10 ppm

Description générale

Copper(II) nitrate trihydrate is a crystalline compound with high solubility in water. It serves as an excellent precursor for the synthesis of high-purity compounds, nanomaterials, and catalysts.

Application

Metal-organic frameworks (MOFs) have found applications in various fields such as gas storage, separations, sensors, catalysis, fuel cells, solar cells, nanotechnology devices, and drug delivery. Through a modular assembly strategy, a highly crystalline thin film of Cu-TCPP MOF was synthesized using Copper(II) nitrate trihydrate and the linker TCPP. This specific MOF holds significant promise due to its well-defined structure and potential for diverse applications. -Copper oxide nanoparticles of varying sizes were synthesized through a hydrothermal method using different concentrations of Copper(II) nitrate trihydrate. The pH of the solution was adjusted by adding NaOH or HNO3. This versatile approach allowed for the controlled synthesis of copper oxide nanoparticles with different sizes. - Mesoporous CuCo2O4 nanowires were synthesized as electrode materials for supercapacitors using Copper(II) nitrate trihydrate and Cobalt(II) nitrate hexahydrate using hydrothermal method. The synthesis involved nanocasting from a silica SBA-15 template. These electrode materials exhibited a capacitance of 1210 F g–1 at a current density of 2 A g–1, which significantly increased upon cycling to exceed 3000 F g–1. - A hybrid electrode comprising CuO and Cu2O micronanoparticles within a graphitized porous carbon matrix was synthesized using Copper(II) nitrate trihydrate via a one-step thermal transformation process. This hybrid electrode exhibited remarkable performance when employed as a negative electrode in lithium-ion and sodium-ion batteries, achieving capacities of 887.3 mAh g–1 at 60 mA g–1 and 302.9 mAh g–1 at 50 mA g–1 after 200 cycles, respectively. In addition,Copper(II) nitrate trihydrate serves as a suitable precursor for synthesizing copper catalysts for various applications. -Copper ferrite catalysts were synthesized using a co-precipitation method with the salt precursors Copper(II) nitrate trihydrate and Fe(NO3)3·9H2O. These catalysts exhibited heightened activity in the water-gas shift reaction. The improved catalytic performance can be attributed to factors such as enhanced Cu dispersion, a higher quantity of surface copper atoms, the presence of weak basic sites, and a strong interaction between copper and iron oxides, all resulting from the formation of copper ferrite.

Pictogrammes

Flame over circleCorrosionEnvironment

Mention d'avertissement

Danger

Mentions de danger

Classification des risques

Aquatic Acute 1 - Aquatic Chronic 2 - Eye Dam. 1 - Ox. Sol. 2 - Skin Corr. 1B

Code de la classe de stockage

5.1B - Oxidizing hazardous materials

Classe de danger pour l'eau (WGK)

WGK 3

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Highly Ordered Mesoporous CuCo2O4 Nanowires, a Promising Solution for High-Performance Supercapacitors
Pendashteh, A, etc.
Chemistry of Materials, 27(11), 3919?3926-3919?3926 (2015)
Hydrothermal Synthesis of CuO Nanoparticles: Study on Effects of Operational Conditions on Yield, Purity, and Size of the Nanoparticles
Outokesh, M, etc.
Industrial & Engineering Chemistry Research, 50(6), 3540?3554-3540?3554 (2011)
Facile ?Modular Assembly? for Fast Construction of a Highly Oriented Crystalline MOF Nanofilm
Xu, G, etc.
Journal of the American Chemical Society, 134(40), 16524?16527-16524?16527 (2012)
Characterization and catalytic performance of copper-based WGS catalysts derived from copper ferrite
Lin X, et al.
International Journal of Hydrogen Energy, 39(12), 6424-6432 (2014)
One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal?Organic Framework for Li- and Na-Ion Batteries
A-Young Kim, et.al
ACS Applied Materials & Interfaces, 8(30), 19514?19523-19514?19523 (2016)

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique