Accéder au contenu
Merck
Toutes les photos(1)

Key Documents

900889

Sigma-Aldrich

Lithium phenyl-2,4,6-trimethylbenzoylphosphinate

≥95%

Synonyme(s) :

LAP

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule empirique (notation de Hill):
C16H16LiO3P
Numéro CAS:
Poids moléculaire :
294.21
Code UNSPSC :
12352128
Nomenclature NACRES :
NA.23

Niveau de qualité

Pureté

≥95%

Forme

crystalline powder

Couleur

white to off-white

Température de stockage

2-8°C

Chaîne SMILES 

CC1=C(C(P(C2=CC=CC=C2)(O[Li])=O)=O)C(C)=CC(C)=C1

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Application

Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) is a water soluble, cytocompatible, Type I photoinitiator for use in the polymerization of hydrogels or other polymeric materials. This photoinitator is preferred over Irgacure 2959 for biological applications due to its increased water solubility, increased polymerization rates with 365 nm light, and absorbance at 400 nm allowing for polymerization with visible light. The improved polymerization kinetics enable cell encapsualation at reduced initiator concentration and longer wavelength light, which has been shown to reduce initiator toxicity and increase cell viability.

Caractéristiques et avantages

  • Superior water solubility
  • Biocompatible
  • Sensitiveto visible light

Code de la classe de stockage

11 - Combustible Solids

Classe de danger pour l'eau (WGK)

WGK 3

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Tiffany Zhang et al.
Scientific reports, 10(1), 15796-15796 (2020-09-27)
Inspired by the interesting natural antimicrobial properties of honey, biohybrid composite materials containing a low-fouling polymer hydrogel network and an encapsulated antimicrobial peroxide-producing enzyme have been developed. These synergistically combine both passive and active mechanisms for reducing microbial bacterial colonization.
Joshua D McCall et al.
Biomacromolecules, 13(8), 2410-2417 (2012-06-30)
Photoinitiated polymerization remains a robust method for fabrication of hydrogels, as these reactions allow facile spatial and temporal control of gelation and high compatibility for encapsulation of cells and biologics. The chain-growth reaction of macromolecular monomers, such as acrylated PEG
Zhiguang Qiao et al.
Biomaterials, 266, 120385-120385 (2020-10-30)
Despite significant advances in osteochondral tissue engineering, it remains challenging to successfully reconstruct native-like complex tissues organized in three-dimension with spatially varying compositional, structural and functional properties. In this contribution, inspired by the gradients in extracellular matrix (ECM) composition and
Kavin Kowsari et al.
iScience, 24(11), 103372-103372 (2021-11-27)
To address current unmet needs in terms of scalability and material biocompatibility for future photocrosslinking-based additive manufacturing technologies, emergent platform designs are in inexorable demand. In particular, a shift from the present use of cell-damaging UV light sources in light-based
Jonathan H Galarraga et al.
Scientific reports, 9(1), 19987-19987 (2019-12-29)
3D bioprinting is a promising approach for the repair of cartilage tissue after damage due to injury or disease; however, the design of 3D printed scaffolds has been limited by the availability of bioinks with requisite printability, cytocompatibility, and bioactivity.

Articles

Water-dispersible photoinitiator nanoparticles enable novel formulations for 3D bioprinting, tissue engineering, and device manufacturing.

Water-dispersible photoinitiator nanoparticles enable novel formulations for 3D bioprinting, tissue engineering, and device manufacturing.

Water-dispersible photoinitiator nanoparticles enable novel formulations for 3D bioprinting, tissue engineering, and device manufacturing.

Water-dispersible photoinitiator nanoparticles enable novel formulations for 3D bioprinting, tissue engineering, and device manufacturing.

Contenu apparenté

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Afficher tout

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique