Accéder au contenu
Merck
AccueilApplicationsGénomiqueCriblage de génomique fonctionnelle

Criblage de génomique fonctionnelle

Criblage de génomique fonctionnelle sur banques à échantillons regroupés ou en jeu ordonné

La génomique fonctionnelle permet de découvrir la fonction d'un gène ainsi que son implication dans les voies biochimiques, cellulaires et physiologiques. La disponibilité de séquences génomiques complètes et d'outils de modification génomique facilement programmables permet d'effectuer ces analyses à l'échelle d'un génome. Le principal objectif d'un criblage génomique est de comprendre l'émergence d'un phénotype spécifique en modifiant la fonction d'un gène de façon ciblée et délibérée. Lorsque certains gènes sont supprimés ou modulés dans une cellule ou un organisme, des changements de phénotype ou de comportement peuvent être observés, directement ou indirectement, au moyen d'expériences préparées avec soin. Le criblage de génomique fonctionnelle permet de réaliser ces analyses de façon systématique et en parallèle, d'élucider des voies complexes, de comprendre des états pathologiques et de faciliter l'identification de nouvelles cibles médicamenteuses.  

La génomique fonctionnelle utilise deux grandes méthodes pour établir un lien entre génétique et phénotype. Le criblage génétique classique consiste à modifier de nombreux gènes, à sélectionner les cellules ou les organismes présentant le phénotype d'intérêt, puis à identifier les gènes dont la modulation a déclenché le changement de phénotype. Le criblage génétique inverse analyse le phénotype des cellules ou des organismes après la perturbation d'un gène ou d'une combinaison de gènes spécifique.


Something went wrong, please try again.

Catégories à la une

L'image présente une illustration anatomique du système digestif humain, centrée sur les intestins indiqués en rouge.
Microbiome

Analyse complète du microbiome intestinal : découvrez une solution globale englobant la préparation des échantillons, le séquençage, la bio-informatique et les statistiques. De l'analyse de l'ARN 16S au séquençage du génome entier (WGS).

Commander des produits
Illustration stylisée d'une bio-imprimante 3D, représentant un panneau de contrôle avec des boutons et un écran affichant un graphique. L'imprimante est représentée en train de créer un modèle réaliste d'organe humain, probablement un cœur, suspendu dans une chambre transparente remplie de liquide.
Agitateurs à usage unique

Exploitez la puissance de notre offre de matériaux pour la science et l'ingénierie, comprenant des biomatériaux, des nanomatériaux, et des matériaux énergétiques et électroniques pour vos recherches et vos applications industrielles.

Commander des produits

Les progrès accomplis dans les technologies d'édition génomique, d'extinction de gènes, de modulation génique, de séquençage de nouvelle génération et de criblage phénotypique permettent la bonne exécution de criblages de génomique fonctionnelle sur une grande diversité de systèmes modèles.

  • Interférence par ARN (ARNi) : plusieurs types de réactifs ARNi peuvent être employés pour l'extinction (ou silençage) des gènes, notamment de longs ARN double brin (ARNdb), de petits ARN synthétiques interférents (ARNsi) et de petits ARN en épingle à cheveux (shARN). Ces réactifs ARNi sont introduits dans les cellules par transfection directe du facteur de modulation (ARNsi et ARNdb), par transfection d'un ADN codant un shARN contrôlé par un promoteur, ou par des méthodes de transduction virale utilisant des vecteurs lentiviraux contenant des cassettes de shARN clonées. L'ARNdb et l'ARNsi peuvent être utilisés sur des cribles en jeu ordonné pour un criblage à haut débit, tandis que les shARN peuvent être introduits dans des populations de cellules sur des cribles à échantillons regroupés ou en jeu ordonné pour une analyse à haut débit, les cribles à échantillons regroupés utilisant le séquençage de nouvelle génération pour la déconvolution.
  • Systèmes CRISPR/Cas : les systèmes CRISPR ("Clustered Regularly Interspaced Short Palindromic Repeat", courtes répétitions palindromiques groupées et régulièrement espacées) peuvent être utilisés pour manipuler les génomes, transcriptomes et épigénomes de cellules de mammifères. Dans l'édition génomique CRISPR/Cas9, une nucléase Cas9 cible un locus spécifique par l'intermédiaire d'un ARN guide. Selon la variante de Cas9 employée, CRISPR peut servir à éteindre (ou "silencer") génétiquement la production de transcrits en introduisant des mutations par décalage du cadre de lecture, en réprimant la machinerie de transcription, en recrutant des facteurs de transcription pour activer l'expression, en induisant des mutations ponctuelles ciblées ou en modifiant les marqueurs épigénétiques. Tout comme l'ARNi, CRISPR peut être introduit directement sous forme de complexe ribonucléoprotéique (RNP) dans des cribles en jeu ordonné ou sous forme d'ADN plasmidique ou de lentivirus pour des applications de criblage à échantillons regroupés ou en jeu ordonné. Les banques, regroupements ("pools") et jeux ordonnés CRISPR permettent un criblage génétique à haut débit extrêmement polyvalent pour l'analyse fonctionnelle. Un criblage de modulation génomique est également envisageable avec un système CRISPR sans nucléase qui utilise une enzyme dCas9 inactive associée à des effecteurs transcriptionnels qui activent (CRISPRa) ou inhibent (CRISPRi) la transcription génique, entraînant une augmentation ou une diminution de l'expression des gènes.
Recherche de documents
Vous recherchez des informations plus spécifiques ?

Consultez notre recherche de documents pour trouver des fiches de données de sécurité, des certificats et de la documentation technique.

Trouver des documents


    Connectez-vous pour continuer

    Pour continuer à lire, veuillez vous connecter à votre compte ou en créer un.

    Vous n'avez pas de compte ?