Recommended Products
Assay
≥99%
form
powder
reaction suitability
core: tin
reagent type: catalyst
resistivity
11 μΩ-cm, 20°C
bp
2270 °C (lit.)
mp
231.9 °C (lit.)
density
7.310 g/mL at 25 °C (lit.)
cation traces
Bi: ≤200 mg/kg
Cu: ≤100 mg/kg
Fe: ≤100 mg/kg
Pb: ≤500 mg/kg
Sb: ≤300 mg/kg
SMILES string
[Sn]
InChI
1S/Sn
InChI key
ATJFFYVFTNAWJD-UHFFFAOYSA-N
Related Categories
Application
Tin has been used as a precursor for the synthesis of nano-tin oxide which can be deposited on aluminum substrate to be used as an urea sensor. It is generally used for the synthesis of Li/Sn alloys and tin-oxide based electrodes for lithium-ion secondary batteries.
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Particle size and multiphase effects on cycling stability using tin-based materials.
Solid State Ionics, 167(1-2), 29-40 (2004)
Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique.
Chemico-Biological Interactions, 242, 45-49 (2015)
Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries.
Journal of Power Sources, 136(1), 154-159 (2004)
Dalton transactions (Cambridge, England : 2003), 41(48), 14568-14582 (2012-10-12)
Four new organotin(IV) complexes of bis-(2,6-di-tert-butylphenol)tin(IV) dichloride [(tert-Bu-)(2)(HO-Ph)](2)SnCl(2) (1) with the heterocyclic thioamides 2-mercapto-pyrimidine (PMTH), 2-mercapto-4-methyl-pyrimidine (MPMTH), 2-mercapto-pyridine (PYTH) and 2-mercapto-benzothiazole (MBZTH), of formulae {[(tert-Bu-)(2)(HO-Ph)](2)Sn(PMT)(2)} (2), {[(tert-Bu-)(2)(HO-Ph)](2)Sn(MPMT)(2)} (3), {[(tert-Bu-)(2)(HO-Ph)](2)SnCl(PYT)} (4) and {[(tert-Bu-)(2)(HO-Ph)](2)SnCl(MBZT)} (5), have been synthesized and characterized by elemental
Advanced materials (Deerfield Beach, Fla.), 25(11), 1522-1539 (2013-02-13)
The kesterite-structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth-abundant low-cost thin-film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service