Skip to Content
Merck
All Photos(2)

Documents

GF84708681

Silicon

rod, 100mm, diameter 12.7mm, single crystal - random orientation, 100%

Synonym(s):

Silicon, SI007926

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Si
CAS Number:
Molecular Weight:
28.09
MDL number:
UNSPSC Code:
12141911
PubChem Substance ID:
NACRES:
NA.23

Assay

100%

form

rod

manufacturer/tradename

Goodfellow 847-086-81

L × diam.

100 mm × 12.7 mm

bp

2355 °C (lit.)

mp

1410 °C (lit.)

density

2.33 g/mL at 25 °C (lit.)

SMILES string

[Si]

InChI

1S/Si

InChI key

XUIMIQQOPSSXEZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

For updated SDS information please visit www.goodfellow.com.

Legal Information

Product of Goodfellow

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Emil Rudobeck et al.
Radiation research, 181(4), 407-415 (2014-03-15)
An unavoidable complication of space travel is exposure to radiation consisting of high-energy charged particles (HZE), such as Fe and Si nuclei. HZE radiation can affect neuronal functions at the level of the synapse or neuronal soma without inducing significant
David J Savage et al.
Current opinion in pharmacology, 13(5), 834-841 (2013-07-13)
Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as
Keith R Martin
Metal ions in life sciences, 13, 451-473 (2014-01-29)
Silicon is the second most abundant element in nature behind oxygen. As a metalloid, silicon has been used in many industrial applications including use as an additive in the food and beverage industry. As a result, humans come into contact
Dean G Johnson et al.
Advances in chronic kidney disease, 20(6), 508-515 (2013-11-12)
The development of wearable or implantable technologies that replace center-based hemodialysis (HD) hold promise to improve outcomes and quality of life for patients with ESRD. A prerequisite for these technologies is the development of highly efficient membranes that can achieve
Yanli Wang et al.
Advanced materials (Deerfield Beach, Fla.), 25(37), 5177-5195 (2013-07-06)
Semiconducting silicon nanowires (SiNWs) represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, structure, morphology, doping, and assembly

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service