Skip to Content
Merck
All Photos(2)

Key Documents

438294

Sigma-Aldrich

Tetrabutylphosphonium hydroxide solution

40 wt. % in H2O

Synonym(s):

TBPH

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(CH3CH2CH2CH2)4P(OH)
CAS Number:
Molecular Weight:
276.44
Beilstein:
4826225
MDL number:
UNSPSC Code:
12352000
PubChem Substance ID:
NACRES:
NA.22

form

liquid

Quality Level

concentration

40 wt. % in H2O

refractive index

n20/D 1.412

density

0.989 g/mL at 25 °C

functional group

phosphine

SMILES string

[OH-].CCCC[P+](CCCC)(CCCC)CCCC

InChI

1S/C16H36P.H2O/c1-5-9-13-17(14-10-6-2,15-11-7-3)16-12-8-4;/h5-16H2,1-4H3;1H2/q+1;/p-1

InChI key

DFQPZDGUFQJANM-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

Application

Tetrabutylphosphonium hydroxide (TBPH) can be used:
  • To convert poorly water-soluble acidic APIs into TBP ionic liquids (IL).
  • As a cation source in the synthesis of Good′s buffer ionic liquids (GB-ILs) via an acid−base neutralization reaction with Good′s buffer anions.
  • To synthesize tetrabutylphosphonium acetate, which along with Cu2O-nanoparticles forms an excellent catalyst system for protodecarboxylation reactions.

Pictograms

Corrosion

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Skin Corr. 1B

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Jer-Cherng Chang et al.
PloS one, 12(7), e0180828-e0180828 (2017-07-08)
Mutations in TDP-43 are associated with proteinaceous inclusions in neurons and are believed to be causative in neurodegenerative diseases such as frontotemporal dementia or amyotrophic lateral sclerosis. Here we describe a Drosophila system where we have engineered the genome to
Evaluating self-buffering ionic liquids for biotechnological applications
Lee SY, et al.
ACS sustainable chemistry & engineering, 3(12), 3420-3428 (2015)
Takashi Miyamoto et al.
Frontiers in chemistry, 8, 547-547 (2020-08-09)
With increasing global power demand, thermal energy storage technology could play a role ensuring a sustainable energy supply in power generation from renewable energy sources and power demand concentration. Hydrates have high potential as phase change materials (PCMs) for the
Ryan J H West et al.
Acta neuropathologica communications, 8(1), 158-158 (2020-09-08)
A large intronic hexanucleotide repeat expansion (GGGGCC) within the C9orf72 (C9orf72-SMCR8 Complex Subunit) locus is the most prevalent genetic cause of both Frontotemporal Dementia (FTD) and Motor Neuron Disease (MND). In patients this expansion is typically hundreds to thousands of
Kazuma Ikeda et al.
Organic & biomolecular chemistry, 17(31), 7337-7341 (2019-07-25)
Factors contributing to the different distribution behaviour of cytochrome c were investigated in a biphasic tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate and potassium phosphate buffer system, which shows a lower critical solution temperature. To change charge balance and hydrophobicity of cytochrome c, surface modification

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service