Skip to Content
Merck
All Photos(1)

Documents

50811-U

Supelco

Ascentis® Express 90 Å C18 (2 μm) HPLC Columns

L × I.D. 5 cm × 2.1 mm UHPLC Column

Synonym(s):

Core-shell (SPP) Fused Core C18 HPLC column

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41115700
NACRES:
SB.52

product name

Ascentis® Express C18, 2 μm UHPLC Column, 2 μm particle size, L × I.D. 5 cm × 2.1 mm

material

stainless steel column

Agency

suitable for USP L1

product line

Ascentis®

feature

endcapped

manufacturer/tradename

Ascentis®

packaging

1 ea of

parameter

1000 bar max. pressure (14500 psi)
60 °C temp. range

technique(s)

LC/MS: suitable
UHPLC-MS: suitable
UHPLC: suitable

L × I.D.

5 cm × 2.1 mm

surface area

120 m2/g

impurities

<5 ppm metals

matrix

Fused-Core particle platform
superficially porous particle

matrix active group

C18 (octadecyl) phase

particle size

2 μm

pore size

90 Å pore size

operating pH

2-9

application(s)

food and beverages

separation technique

reversed phase

Looking for similar products? Visit Product Comparison Guide

Recommended products

Discover LiChropur reagents ideal for HPLC or LC-MS analysis

Legal Information

Ascentis is a registered trademark of Merck KGaA, Darmstadt, Germany

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Petra Šilarová et al.
Food chemistry, 237, 471-480 (2017-08-03)
The degradation of catechins and other phenolics in green tea infusions were monitored using fast HPLC/MS separation. The final separation was performed within 2.5min using Ascentis Express C18 column (50mm×2.1mm i.d.) packed with 2μm porous shell particles. Degradation was studied
Judy Stone
Methods in molecular biology (Clifton, N.J.), 1378, 301-320 (2015-11-26)
Serum from bar-coded tubes, and then internal standard, are pipetted to 96-well plates with an 8-channel automated liquid handler (ALH). The first precipitation reagent (methanol:ZnSO4) is added and mixed with the 8-channel ALH. A second protein precipitating agent, 1 %
Pankaj Partani et al.
Journal of chromatographic science, 54(8), 1385-1396 (2016-05-27)
A liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of simvastatin (SV) and simvastatin acid (SVA) in human plasma. To improve assay sensitivity and achieve simultaneous analysis, SVA monitored in (-)ESI (electrospray ionization) mode within
Francesco Pio Prencipe et al.
Journal of chromatography. A, 1349, 50-59 (2014-05-27)
The study was aimed at developing a new analytical method for the metabolite fingerprinting of bioactive compounds in Humulus lupulus L. (hop), together with a simple extraction procedure. Different extraction techniques, including maceration, heat reflux extraction (HRE), ultrasound-assisted extraction (UAE)
Silvia Jakabová et al.
Journal of chromatography. A, 1232, 295-301 (2012-03-07)
Hyoscyamine (atropine) and scopolamine are the predominant tropane alkaloids in the Datura genus, occurring in all plant organs. The assessment of the alkaloid content of various plant parts is essential from the viewpoint of medical use, but also as a

Related Content

Small molecules are ions and compounds of molecular weight typically less than 900 daltons. These compounds can be effectively separated and analyzed by HPLC, UHPLC and LC-MS using mainly silica particles or monolithic stationary phases with a broad range of column chemistries (modifications).

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service