Microfluidic generation of droplets can produce highly monodispersed droplets with high frequency (up to hundreds of kHz). Interest in droplet-based microfluidic systems has grown substantially, because microfluidics offers the ability to handle very small volumes (μl to fl) of fluids, provides better mixing, encapsulation, sorting, and sensing. Microfluidics can be used for high throughput experimentation. Microfluidic-based droplets have many diverse and varied applications such as particle synthesis and chemical analysis. Highly controlled droplet production also makes single cell analysis, or drug testing possible.
Droplet generator chip - One channel design, Fluidic 163, COC is made of COC (Cyclic olefin copolymer ), it is the larger version of the Fluidic 162 chip and features a similar design with larger channel dimensions. With a nozzle size of 140 μm droplet sizes between 190 μm (∼3.25 nl) and 420 μm diameter can be realized. Fluidic 163 can be used from two sides, as it features droplet generation crossings at either side of the collection channel. Both sides are similar in channel design with a slight difference in distance of the double cross intersections
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Lot/Batch Number
Sorry, we don't have COAs for this product available online at this time.
The microfluidic technique has brought unique opportunities toward the full control over the production processes for drug delivery carriers, owing to the miniaturisation of the fluidic environment. In comparison to the conventional batch methods, the microfluidic setup provides a range
Recent advances of controlled drug delivery usingmicrofluidic platforms.
Advanced drug delivery reviews, 128, 3-28 (2017-09-19)
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired
Microfluidic assembly improves polyamine nanoencapsulation of nucleic acids, overcoming challenges like polydispersity and poor reproducibility.
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.