Skip to Content
Merck
All Photos(1)

Documents

53876

Sigma-Aldrich

Atto 647N alkyne

BioReagent, suitable for fluorescence

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352108
NACRES:
NA.32

product line

BioReagent

Quality Level

form

solid

manufacturer/tradename

ATTO-TEC GmbH

λ

in ethanol (with 0.1% trifluoroacetic acid)

UV absorption

λ: 641.0-647.0 nm Amax

suitability

suitable for fluorescence

storage temp.

−20°C

General description

Atto 647N belongs to a new generation of fluorescent labels for the red spectral region. The dye is designed for application in the area of life science, e.g. labeling of DNA, RNA or proteins. Characteristic features of the label are strong absorption, excellent fluorescence quantum yield, high photostability, excellent ozone resistance, good solubility, and very little triplet formation. Atto 647N is a cationic dye. After coupling to a substrate the dye carries a net electrical charge of +1.
In common with most Atto-labels, absorption and fluorescence are independent of pH in the range of 2 to 11, used in typical applications. As supplied Atto 647N consists of a mixture of two isomers with practically identical absorption and fluorescence properties.
The alkyne modification is used in the Huisgen reaction (“Click Chemistry“).

find more information here

Legal Information

This product is for Research use only. In case of intended commercialization, please contact the IP-holder (ATTO-TEC GmbH, Germany) for licensing.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Sub-Diffraction Nano Manipulation Using STED AFM.
Chacko, Jenu V.; et al.
PLoS ONE, 8(6), e66608-e66608 (2013)
Maturation of active zone assembly by Drosophila Bruchpilot.
Fouquet, W.; et al.
The Journal of Cell Biology, 186(1), 129-145 (2009)
A novel nanoscopic tool by combining AFM with STED microscopy.
Harke, B.; et al
Optical Nanoscopy, 1(1), 3-3 (2012)
Self-Calibrated Line-Scan STED-FCS to Quantify Lipid Dynamics in Model and Cell Membranes.
Benda, A.; Ma, Y.; Gaus, K.
Biophysical Journal, 108(3), 596-609 (2015)
Johanna Bückers et al.
Optics express, 19(4), 3130-3143 (2011-03-04)
We describe a STED microscope optimized for colocalization experiments with up to three colors. Two fluorescence labels are separated by their fluorescence lifetime whereas a third channel is discriminated by the wavelength of fluorescence emission. Since it does not require

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service