Accéder au contenu
Merck

Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared.

Nature communications (2017-03-31)
Tom Willhammar, Kadir Sentosun, Stefanos Mourdikoudis, Bart Goris, Mert Kurttepeli, Marnik Bercx, Dirk Lamoen, Bart Partoens, Isabel Pastoriza-Santos, Jorge Pérez-Juste, Luis M Liz-Marzán, Sara Bals, Gustaaf Van Tendeloo
RÉSUMÉ

Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Lithium bis(trimethylsilyl)amide, 97%
Sigma-Aldrich
Acide oléique, ≥99% (GC)