β-D-Glucopyranosyl azide, 2-(acetylamino)-2-deoxy-, 3,4,6-triacetate is commonly used in organic synthesis, particularly for the preparation of glycosyl azides, which are versatile intermediates in the synthesis of glycoconjugates. In carbohydrate chemistry, it can be employed for modifying and functionalizing carbohydrates, including the introduction of azide groups. These azide-modified carbohydrates can participate in click chemistry reactions, enabling the development of bioconjugates and glycoarrays. In drug discovery, this compound aids in the design and synthesis of carbohydrate-based therapeutics, such as glycosidase inhibitors or glycoconjugate vaccines, by modifying carbohydrate structures. For biochemical research, this compound is valuable in studying carbohydrate-protein interactions, glycan biosynthesis, and glycoprotein engineering. It allows for the modification and labeling of carbohydrates for subsequent biological assays and analyses. Finally, as an azide derivative, it finds application in click chemistry reactions, specifically the azide-alkyne cycloaddition reaction (commonly known as the "click reaction"). This reaction enables efficient and selective labeling, bioconjugation, and cross-linking in various biological and materials science applications.
Caractéristiques et avantages
β-D-Glucopyranosyl azide, 2-(acetylamino)-2-deoxy-, 3,4,6-triacetate is a complex carbohydrate and the glycosylation product of 2,3,4,6-tetraacetyl α--D--glucose and 2,3,6 -tri--O--acetyl--2--deoxy--β--D--glucopyranose. This compound has been modified by Click Chemistry with 4-(dimethylamino)pyridine (DMAP). The modification has produced an acetamido group at the C2 position of the glucopyranoside moiety. The compound is available in high purity for research purposes.
Code de la classe de stockage
11 - Combustible Solids
Classe de danger pour l'eau (WGK)
WGK 3
Point d'éclair (°F)
Not applicable
Point d'éclair (°C)
Not applicable
Faites votre choix parmi les versions les plus récentes :
Journal of medicinal chemistry, 51(6), 1945-1953 (2008-03-01)
A library of glycoconjugate benzene sulfonamides have been synthesized and investigated for their ability to inhibit the enzymatic activity of physiologically relevant human carbonic anhydrase (hCA) isozymes: hCA I, II, and tumor-associated IX. Our synthetic strategy directly links the known
Drug development research, 77(6), 319-325 (2016-08-16)
Preclinical Research A series of novel carbohydrate-derived Erlotinib derivatives were prepared by the copper-catalyzed cycloaddition reaction of erlotinib with various azido-sugars. The structures of the newly synthesized compounds were characterized and their cytostatic effects evaluated in vitro on human cancer
Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..