Skip to Content
Merck
All Photos(4)

Documents

T36609

Sigma-Aldrich

m-Toluic acid

ReagentPlus®, 99%

Synonym(s):

3-Methylbenzoic acid

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3C6H4CO2H
CAS Number:
Molecular Weight:
136.15
Beilstein:
970526
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

product line

ReagentPlus®

Assay

99%

bp

263 °C (lit.)

mp

107-113 °C (lit.)

density

1.054 g/mL at 25 °C (lit.)

SMILES string

Cc1cccc(c1)C(O)=O

InChI

1S/C8H8O2/c1-6-3-2-4-7(5-6)8(9)10/h2-5H,1H3,(H,9,10)

InChI key

GPSDUZXPYCFOSQ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Legal Information

ReagentPlus is a registered trademark of Merck KGaA, Darmstadt, Germany

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

302.0 °F

Flash Point(C)

150 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

I Sarand et al.
Journal of applied microbiology, 86(5), 817-826 (1999-05-29)
The tolerance to, and degradation of m-toluate by Scots pine (Pinus sylvestris), a symbiotic mycorrhizal fungus (Suillus bovinus) and Pseudomonas fluorescens strains, with or without m-toluate-degrading capacity, was determined individually and in all symbiotic/associative plant-microbe combinations. Fungal survival on medium
Minna M Jussila et al.
Environmental pollution (Barking, Essex : 1987), 139(2), 244-257 (2005-08-02)
A collection of 50 indigenous meta-toluate tolerating bacteria isolated from oil-contaminated rhizosphere of Galega orientalis on selective medium was characterized and identified by classical and molecular methods. 16S rDNA partial sequencing showed the presence of five major lineages of the
R J Kolenc et al.
Applied and environmental microbiology, 54(3), 638-641 (1988-03-01)
A psychrotrophic bacterium, originally isolated from a natural aquatic environment, was characterized and identified as Pseudomonas putida Q5 for use as a representative recipient for biodegradative genes from a mesophilic microorganism. The TOL plasmid pWWO of the mesophile P. putida
C P Saint et al.
Journal of general microbiology, 136(4), 627-636 (1990-04-01)
The ability to degrade aromatic amines and m-toluate (Tdn+ phenotype), encoded by plasmid pTDN1, was lost from Pseudomonas putida hosts after subculture in benzoate, succinate, acetate and glucose minimal medium, the fastest rate of loss occurring where benzoate was the
M T Gallegos et al.
Journal of bacteriology, 178(8), 2356-2361 (1996-04-01)
Growth of Pseudomonas putida (pWWO) on alkylbenzoates requires the expression of the meta pathway operon, which is mediated by the XylS protein after binding of a benzoate effector. Alternatively, in cells growing on toluene or its aromatic alcohols, overexpression of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service