765139
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide)
PEG average Mn 5,000, PLGA Mn 7,000
Synonym(s):
PEG-PLGA, Polyethylene glycol, mPEG-b-PLGA
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
form
solid
feed ratio
lactide:glycolide 50:50
mol wt
PEG average Mn 5,000
PLGA Mn 7,000
average Mn 12,000 (total)
degradation timeframe
1-4 weeks
transition temp
Tg 24 °C
Tm 38-43 °C
PDI
<2.0
storage temp.
2-8°C
Looking for similar products? Visit Product Comparison Guide
General description
Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part.
Application
Used in the synthesis of targeted nanoparticles which are used for differential delivery and controlled release of drugs.
forming "stealth" pegylated microparticles
Features and Benefits
- Good biocompatibility, low immunogenicity and good degradability.
- Properties can be easily modulated by changing the block copolymer segment sizes to suit a particular application.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
No data available
Flash Point(C)
No data available
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Thermosensitive self-assembling block copolymers as drug delivery systems.
Polymer, 3(2), 779-811 (2011)
Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2586-2591 (2008-02-15)
There has been progressively heightened interest in the development of targeted nanoparticles (NPs) for differential delivery and controlled release of drugs. Despite nearly three decades of research, approaches to reproducibly formulate targeted NPs with the optimal biophysicochemical properties have remained
PLGA-PEG Encapsulated sitamaquine nanoparticles drug delivery system against Leishmania donovani
Journal of Scientific and Innovative Research, 3(1), 85-90 (2014)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service