GF52959785
Zinc
foil, 300x300mm, thickness 0.1mm, as rolled, 99.95+%
Synonym(s):
Zinc, ZN000250
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Recommended Products
vapor pressure
1 mmHg ( 487 °C)
Assay
99.95%
form
foil
manufacturer/tradename
Goodfellow 529-597-85
resistivity
5.8 μΩ-cm, 20°C
size × thickness
300x300 mm × 0.1 mm
bp
907 °C (lit.)
mp
420 °C (lit.)
density
7.133 g/mL at 25 °C (lit.)
SMILES string
[Zn]
InChI
1S/Zn
InChI key
HCHKCACWOHOZIP-UHFFFAOYSA-N
General description
For updated SDS information please visit www.goodfellow.com.
Legal Information
Product of Goodfellow
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
A new vapor-phase hydrothermal method to concurrently grow ZnO nanotube and nanorod array films on different sides of a zinc foil substrate.
Chemistry (Weinheim an der Bergstrasse, Germany), 18(17), 5165-5169 (2012-03-21)
The journal of physical chemistry. B, 110(51), 25850-25855 (2006-12-22)
Vertically aligned ZnO nanorods with uniform diameter and length have been synthesized on a zinc foil substrate with ammonium persulfate as oxidant via a facile, larger scale production and inexpensively synthesized method without any templates or additives. SEM and XRD
The Journal of sports medicine and physical fitness, 54(2), 232-237 (2014-02-11)
The role of zinc and copper has been shown essential in the scope of physical exercise. The outcomes of the studies about changes in the concentrations of these elements in blood, in physical effort situations, are sometimes discordant and seem
Chemistry (Weinheim an der Bergstrasse, Germany), 13(23), 6667-6673 (2007-05-31)
Well-aligned zinc oxide microrod and microtube arrays with high aspect ratios were fabricated on zinc foil by a simple solution-phase approach in an aqueous solution of ethylenediamine (en). The shape of the ZnO microstructures can be easily modulated from rods
Chemistry (Weinheim an der Bergstrasse, Germany), 10(22), 5823-5828 (2004-10-09)
A solution surface-erosion route was successfully employed to produce one-dimensional (1D) ZnO nanostructures. ZnO nanorod arrays and three-dimensional urchin-like assemblies could be selectively obtained with different manipulations. In this process, zinc foil was introduced to an organic solution system and
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service