Skip to Content
Merck
All Photos(1)

Key Documents

T200

Sigma-Aldrich

(1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid hydrate

≥97% (HPLC), solid

Synonym(s):

TPMPA hydrate

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C6H12NO2P · xH2O
CAS Number:
Molecular Weight:
161.14 (anhydrous basis)
UNSPSC Code:
12352106
PubChem Substance ID:
NACRES:
NA.77

Quality Level

Assay

≥97% (HPLC)

form

solid

color

white to off-white

solubility

H2O: 16 mg/mL
DMSO: insoluble

SMILES string

[H]O[H].CP([O-])(=O)C1=CC[NH2+]CC1

InChI

1S/C6H12NO2P.H2O/c1-10(8,9)6-2-4-7-5-3-6;/h2,7H,3-5H2,1H3,(H,8,9);1H2

InChI key

GXVWAQPRAQORGS-UHFFFAOYSA-N

Application

(1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid hydrate has also been used as γ-aminobutyric acid C (GABAc) blocker in retinal ganglion cells.
TPMA has been used as a GABAC receptor antagonist to study the role of inner retinal inhibition in midget ganglion cells. TPMPA has also been used to study the role of GABAC receptor antagonists in suppressing orientation selectivity in ganglion cells.

Biochem/physiol Actions

TPMPA is a hybrid of isoguvacine and 3-APMPA designed to retain affinity for GABAC receptors but not to interact with GABAA or GABAB receptors. Electrical assays show that TPMPA is a competitive antagonist of cloned human mu 1 GABAC receptors expressed in Xenopus laevis oocytes (Kb approx. 2 μM). TPMPA is >100-fold weaker as an inhibitor of rat brain GABAA receptors expressed in oocytes (Kb approx. 320 μM) and has only weak agonist activity on GABAB receptors assayed in rat hippocampal slices (EC50 approx. 500 μM). TPMPA may be used to investigate GABAC receptor function in the outer retina and in any other areas of the nervous system in which these types of receptor are present.

Features and Benefits

This compound is a featured product for Neuroscience research. Click here to discover more featured Neuroscience products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.
This compound is featured on the GABAC Receptors page of the Handbook of Receptor Classification and Signal Transduction. To browse other handbook pages, click here.

Preparation Note

(1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) hydrate is soluble in water at 16 mg/ml, but is insoluble in DMSO.

Legal Information

Sold in the USA under exclusive license from the University of California.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Sowmya Venkataramani et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(46), 15664-15676 (2010-11-19)
Cells sensitive to the orientation of edges are ubiquitous in visual systems, and have been described in the vertebrate retina, yet the synaptic mechanisms that generate orientation selectivity in the retina are largely unknown. Here, we analyze the synaptic mechanisms
Montserrat Samsó
European journal of translational myology, 25(1), 4840-4840 (2016-02-26)
Excitation contraction coupling, the rapid and massive Ca(2+) release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor
Benjamin J Smith et al.
Neuroscience, 340, 279-290 (2016-12-17)
We examined the contribution of the sodium channel isoform Nav1.8 to retinal function using the specific blocker A803467. We found that A803467 has little influence on the electroretinogram (ERG) a- and b-waves, but significantly reduces the oscillatory potentials (OPs) to
G A Johnston
Trends in pharmacological sciences, 17(9), 319-323 (1996-09-01)
The inhibitory neurotransmitter, GABA, activates a variety of receptors in all areas of the CNS. Two major subtypes of GABA receptors are well known: (1) GABAA receptors are ligand-gated Cl- channels that consist of a heteromeric mixture of protein subunits
The first selective antagonist for a GABAC receptor.
Murata, Y., et al.
Bioorganic & Medicinal Chemistry Letters, 6, 2073-2076 (1996)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service