Artificial solids composed of semiconductor quantum dots (QDs) are being developed for large-area electronic and optoelectronic applications, but these materials often have defect-induced in-gap states (IGS) of unknown chemical origin. Here we performed scanning probe based spectroscopic analysis and density
Molecular information suggests that there is a broad diversity of acetogens in the rumen, distinct from any currently isolated acetogens. We combined molecular analysis with enrichment culture techniques to investigate this diversity further. Methane-inhibited, hydrogenotrophic enrichment cultures produced acetate as
Advanced materials (Deerfield Beach, Fla.), 27(42), 6598-6605 (2015-10-01)
An interface promoted approach is developed for guiding the design of stable and high capacity materials for Mg batteries using SnSb alloys as model materials. Experimental and theoretical studies reveal that the SnSb alloy has exceptionally high reversible capacity (420
The journal of physical chemistry letters, 6(15), 2933-2937 (2015-08-13)
Colloidal CdSe quantum dot (QD) core ensembles were photodimmed and allowed to recover in the dark using ambient thermal energy at a range of temperatures. Nonlinear thermal recovery is well described by a stretched exponential function, and further analysis yields
Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.