Saltar al contenido
Merck
  • Protic ionic liquids (PILs) nanostructure and physicochemical properties: development of high-throughput methodology for PIL creation and property screens.

Protic ionic liquids (PILs) nanostructure and physicochemical properties: development of high-throughput methodology for PIL creation and property screens.

Physical chemistry chemical physics : PCCP (2014-12-06)
Tamar L Greaves, Krystal Ha, Benjamin W Muir, Shaun C Howard, Asoka Weerawardena, Nigel Kirby, Calum J Drummond
RESUMEN

A high-throughput approach was developed in order to prepare and dry a series of protic ionic liquids (PILs) from 48 Brønsted acid-base combinations. Many combinations comprised an alkyl carboxylic acid paired with an alkyl amine. Visual screens were developed to identify which acid-base combinations formed PILs, and of those, which PILs were likely to have high surface tensions, low viscosities, and low melting points. The surface tension screen was validated through pendant drop surface tension measurements. Karl Fischer coulometric titration was used to obtain the water contents, and it was noted that there is a considerable difference in the drying rate throughout this series of PILs. It was observed that an octyl chain present on either the cation or anion was detrimental to the formation of a PIL with a low melting point, and instead increased the likelihood of a gel or solid forming. The nanostructure of the PILs was determined, using synchrotron small and wide angle X-ray scattering (SAXS/WAXS), to consist of polar and non-polar domains, with the alkyl chains on the cation and anion intercalating. The results indicate that both the alkyl chain on the cation and/or anion contribute to the correlation distance, for the intermediate range order, with the expectation that there is charge alternation of the ions in the polar region. The maximum correlation distance was observed when there was an alkyl chain present on only one ion. This correlation distance could be significantly reduced by varying the alkyl chain length present on the other ion, which was attributed to increased disorder and interdigitation of chains, and to toe-to-toe alignment of the chains. To the best of our knowledge this is the first PIL report into the effect of having an alkyl chain present on both the cation and the anion.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ácido acético, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Ácido nítrico, ACS reagent, 70%
Sigma-Aldrich
Ácido acético, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Ácido nítrico, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Ácido acético, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Ácido acético solution, suitable for HPLC
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ácido nítrico, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥88%
Sigma-Aldrich
Hexylamine, 99%
Sigma-Aldrich
Propionic acid, ≥99.5%
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Ácido octanoico, ≥99%
Sigma-Aldrich
Octylamine, 99%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Hexanoic acid, ≥99%
Sigma-Aldrich
Valeric acid, ≥99%
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethanolamine, ≥99%
Sigma-Aldrich
Ácido acético, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Ethanolamine, ≥98%
Sigma-Aldrich
Ethylamine solution, 66.0-72.0% in H2O