- Surface characterization and osteoblast response to a functionally graded hydroxyapatite/fluoro-hydroxyapatite/titanium oxide coating on titanium surface by sol-gel method.
Surface characterization and osteoblast response to a functionally graded hydroxyapatite/fluoro-hydroxyapatite/titanium oxide coating on titanium surface by sol-gel method.
To improve efficacy of current titanium and its alloys, in bioactivity and speed of osseointegration, of orthopaedic implants. A novel triple-layered functional graded coating, consisting of a porous hydroxyapatite (HA) outermost layer, fluoro-HA (FHA) intermediate layer and titanium oxide (TiO2 ) innermost layer, was created on a titanium substrate by a multistep sol-gel method. X-ray diffraction analysis showed TiO2 anatase and apatite crystallization in the coating. Morphological analysis performed by scanning electron microscopy showed excellent bonding between coating and substrate, with a thickness of ~2 μm. Scratch testing found favourable adhesion strength of the composite coating. In addition, optical microscope images suggested good biocompatibility. Considering thet in vitro cell response, osteoblasts on the coating exhibited higher cell proliferation and ALP activity compared to pure titanium and HA coating, and demonstrated excellent coating bioactivity. Current results indicated that the novel TiO2 /FHA/HA coating has promising clinical applications in orthopaedic and dental implantation.