Saltar al contenido
Merck

Analysis of a model reaction system containing cysteine and (E)-2-methyl-2-butenal, (E)-2-hexenal, or mesityl oxide.

Journal of agricultural and food chemistry (2003-11-13)
Christian Starkenmann
RESUMEN

Cysteine conjugates, resulting from the addition of cysteine to alpha,beta-unsaturated carbonyl compounds, are important precursors of odorant sulfur compounds in food flavors. The aim of this work was to better understand this chemistry in the light of the unexpected double addition of cysteine to two unsaturated aldehydes. These reactions were studied as a function of pH. When (E)-2-methyl-2-butenal (tiglic aldehyde, 4) was treated with cysteine in water at pH 8, the major product formed was the new compound (4R)-2-(2-[[(2R)-2-amino-2-carboxyethyl]thio]methylpropyl)-1,3-thiazolidine-4-carboxylic acid (6). Under acidic conditions (pH 1), we also observed a double addition, but the second cysteine was linked by a vinylic sulfide bond to form the previously unreported major product, (2R,2'R,E)-S,S'-(2,3-dimethyl-1-propene-1,3-diyl)bis-cysteine (7). When (E)-2-hexenal (12) was treated with cysteine under acidic conditions, the major product was the novel (4R,2' 'R)-2-[2'-(2' '-amino-2' '-carboxyethylthio)pentyl]-1,3-thiazolidine-4-carboxylic acid (13), and the formation of an vinylic sulfide compound analogous to 7 was not observed. Reduction of the acidic crude reaction mixture with NaBH(4) afforded 13 and the cysteine derivative (R)-S-[1-(2-hydroxyethyl)butyl]cysteine (14) in 14% yield. Treating (E)-2-hexenal with cysteine at pH 8 followed by NaBH(4) reduction yielded the new product (3R)-7-propylhexahydro-1,4-thiazepine-3-carboxylic acid (15). Addition of cysteine to mesityl oxide (16), at pH 8, followed by reduction with NaBH(4) furnished (R)-S-(3-hydroxy-1,1-dimethylbutyl)cysteine (3) and the new compound (3R)-hexahydro-5,7,7-trimethyl-1,4-thiazepine-3-carboxylic acid (18).

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Mesityl oxide, technical grade, 90%