Saltar al contenido
Merck

Vitamin C modulates the levels of several proteins of the mitochondrial complex III and its activity in the mouse liver.

Redox biology (2022-10-01)
Lucie Aumailley, Sylvie Bourassa, Clarisse Gotti, Arnaud Droit, Michel Lebel
RESUMEN

Ascorbate is a crucial antioxidant and essential cofactor of biosynthetic and regulatory enzymes. Unlike humans, mice can synthesize ascorbate thanks to the key enzyme gulonolactone oxidase (Gulo). In the present study, we used the Gulo-/- mouse model, which cannot synthesize their own ascorbate to determine the impact of this vitamin on the liver proteome of specific subcellular organelles. We performed label-free Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) global quantitative proteomic profiling to identify and quantify proteins in microsomal enriched liver extracts (MEE) from Gulo-/- mice treated with 0-0.4% (w/v) ascorbate in drinking water until the age of four months. Using a principal component analysis on normalized and imputed data of the label-free protein quantifications, a sex-based difference in MEE proteome profiles was observed for all the different ascorbate treated mice. Suboptimal hepatic ascorbate concentrations affected the levels of more proteins and hence biochemical processes in females than in males. Nevertheless, Pearson correlation analyses revealed that the MS intensities of various proteins involved in complement activation inversely correlated with liver ascorbate concentrations in both Gulo-/- males and females. Moreover, the correlation analyses also indicated that several proteins in the mitochondrial complex III of the electron transport chain positively correlated with liver ascorbate concentrations in both Gulo-/- females and males. Consequently, the mitochondrial complex III activity in Gulo-/- female and male mice treated with suboptimal hepatic concentrations of ascorbate was significantly lower than Gulo-/- mice treated with optimal ascorbate concentration. Finally, the whole liver of ascorbate-deficient Gulo-/- mice exhibited lower ATP levels and increased reactive oxygen species. These findings provide new information on how ascorbate deficiency potentially induces mitochondrial dysfunction in the liver of mice.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-β-actina monoclonal antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Mitochondrial Complex III Activity Assay Kit, sufficient for 100 colorimetric tests
Sigma-Aldrich
Anti-Mn-SOD Antibody, Upstate®, from rabbit
Sigma-Aldrich
Anti-Catalase antibody ,Mouse monoclonal, clone CAT-505, purified from hybridoma cell culture