GF94883822
Palladium
rod, 25mm, diameter 2.0mm, 99.95%
Synonym(s):
Palladium, PD007920
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Recommended Products
Assay
≥99.95%
form
rod
manufacturer/tradename
Goodfellow 948-838-22
resistivity
9.96 μΩ-cm, 20°C
bp
2970 °C (lit.)
mp
1554 °C (lit.)
density
12.02 g/cm3 (lit.)
SMILES string
[Pd]
InChI
1S/Pd
InChI key
KDLHZDBZIXYQEI-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
General description
For updated SDS information please visit www.goodfellow.com.
Legal Information
Product of Goodfellow
Storage Class Code
13 - Non Combustible Solids
WGK
nwg
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Sorry, we don't have COAs for this product available online at this time.
If you need assistance, please contact Customer Support.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Chemical Society reviews, 40(10), 4912-4924 (2011-06-07)
The formation of oxygen-carbon bonds is one of the fundamental transformations in organic synthesis. In this regard the application of palladium-based catalysts has been extensively studied during recent years. Nowadays it is an established methodology and the success has been
Journal of nanoscience and nanotechnology, 14(2), 2012-2023 (2014-04-23)
This review reports on the recent advances in the synthesis and physico-chemical properties of palladium-containing perovskites. Initially, the perovskite structure is briefly reviewed, then palladium-containing perovskites synthesis and physico-chemical properties are detailed. The applications of palladium-containing perovskites in catalysis; namely
Chemical & pharmaceutical bulletin, 61(10), 987-996 (2013-10-04)
Herein, we describe our development of synthetic methods for heterocyclic compounds based on the palladium-catalyzed carbon-hydrogen bond (C-H) functionalization/intramolecular carbon-heteroatom (nitrogen or sulfur) bond formation process. By this C-H cyclization method, we efficiently prepared various N-heterocycles, including indazoles, indoles, and
Molecules (Basel, Switzerland), 18(9), 10108-10121 (2013-08-27)
The dual activation of simple substrates by the combination of organocatalysis and palladium catalysis has been successfully applied in a variety of different asymmetric transformations. Thus, the asymmetric a-allylation of carbonyl compounds, a-fluorination of acyl derivatives, decarboxylative protonation of β-dicarbonyl
Chemical Society reviews, 41(10), 3929-3968 (2012-03-27)
A survey highlighting the most recent palladium catalytic systems produced and their performances for progress in direct synthesis of indole backbones by heterocarbocyclization of reactive substrates is provided. The discussion is developed in relation with the principles of sustainable chemistry
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service