Skip to Content
Merck
All Photos(3)

Key Documents

346187

Sigma-Aldrich

Trioctylphosphine oxide

technical grade, 90%

Synonym(s):

(Oct)3PO, TOPO®

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[CH3(CH2)7]3PO
CAS Number:
Molecular Weight:
386.63
Beilstein:
1796648
EC Number:
MDL number:
UNSPSC Code:
12352119
PubChem Substance ID:
NACRES:
NA.22

grade

technical grade

Assay

90%

form

solid

bp

201-202 °C/2 mmHg (lit.)

mp

50-52 °C (lit.)

functional group

phosphine oxide

SMILES string

CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC

InChI

1S/C24H51OP/c1-4-7-10-13-16-19-22-26(25,23-20-17-14-11-8-5-2)24-21-18-15-12-9-6-3/h4-24H2,1-3H3

InChI key

ZMBHCYHQLYEYDV-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Used as an extraction or stabilizing agent; also useful as a capping ligand for the production of quantum dots such as CdSe.

Legal Information

TOPO is a registered trademark of Life Technologies

Pictograms

Corrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Chronic 3 - Eye Dam. 1 - Skin Irrit. 2

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

446.0 °F - closed cup

Flash Point(C)

230 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Huwei Feng et al.
Frontiers in chemistry, 8, 266-266 (2020-05-07)
Quantum dot light-emitting diodes (QLEDs) have been considered as the most promising candidate of light sources for the new generation display and solid-state lighting applications. Especially, the performance of visible QLEDs based on II-VI quantum dots (QDs) has satisfied the
Sanjeev Kumar Mahto et al.
Toxicology in vitro : an international journal published in association with BIBRA, 24(4), 1070-1077 (2010-04-07)
With the widespread use of quantum dots (QDs), the likelihood of exposure to QDs has been assumed to have increased substantially. Recently, QDs have been employed in numerous biological and medical applications. However, there is a lack of toxicological data
Raju Banda et al.
Journal of hazardous materials, 213-214, 1-6 (2012-02-18)
The separation and recovery of Mo and Co from the synthetic chloride leach liquors of petroleum refining catalyst has been investigated by employing TOPO and Alamine 308 as extractants. The synthetic leach liquor contained Mo 394 mg/L, Al 1782 mg/L
Shuang-Yuan Zhang et al.
Advanced materials (Deerfield Beach, Fla.), 24(32), 4369-4375 (2012-07-19)
The preparation of vertically or horizontally aligned self-assemblies of CoP nanowires is demonstrated for the first time by aging them in the reaction solution for a sufficient time at 20 or 0 °C. This strategy opens up a way for
Wesley E Smith et al.
ACS nano, 6(11), 9475-9484 (2012-10-09)
Semiconductor quantum dots (Qdots) are a promising new technology with benefits in the areas of medical diagnostics and therapeutics. Qdots generally consist of a semiconductor core, capping shell, and surface coating. The semiconductor core of Qdots is often composed of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service