Saltar al contenido
Merck

Essential amino acid ratios and mTOR affect lipogenic gene networks and miRNA expression in bovine mammary epithelial cells.

Journal of animal science and biotechnology (2016-08-06)
Shanshan Li, Afshin Hosseini, Marina Danes, Carolina Jacometo, Jianxin Liu, Juan J Loor
RESUMEN

The objective of this study was to study how changing the ratio of Lys to Thr, Lys to His, and Lys to Val affects the expression of lipogenic genes and microRNA (miRNA) in bovine mammary epithelial cells. Triplicate cultures with the respective "optimal" amino acid (AA) ratio (OPAA = Lys:Met 2.9:1; Thr:Phe 1.05:1; Lys:Thr 1.8:1; Lys:His 2.38:1; Lys:Val 1.23:1) plus rapamycin (OPAARMC; positive control), OPAA, Lys:Thr 2.1:1 (LT2.1), Lys:Thr 1.3:1 (LT1.3), Lys:His 3.05:1 (LH3.0), or Lys:Val 1.62:1 (LV1.6) were incubated in lactogenic medium for 12 h. The expression of 15 lipogenic genes and 7 miRNA were evaluated. Responses to LT2.1, LT1.3, LH3.0, and LV1.6 relative to the control (OPAARMC) included up-regulated expression of ACSS2, FABP3, ACACA, FASN, SCD, LPIN1, INSIG1, SREBF1, PPARD, and NR1H3 (commonly known as LXR-α). Furthermore, LV1.6 up-regulated expression of ACSL1, DGAT1, and RXRA and down-regulated PPARG expression. Although no effect of OPAA on expression of PPARG was observed, compared with the control, OPAA up-regulated expression of the PPAR targets ACSS2, FABP3, ACACA, FASN, SCD, LPIN1, INSIG1, and SREBF1. Compared with the control, the expression of the anti-lipogenic MIR27AB was down-regulated by OPAA, LT2.1, LT1.3 and LH3.0. In contrast, compared with the control, the expression of the pro-lipogenic MIR21 was up-regulated by LT2.1, LT1.3, LH3.0, and LV1.6. The observed up-regulation of lipogenic gene networks and the changes in expression of key miRNA involved in the control of lipogenic balance are indicative of a potentially important role of EAA ratios and mTOR signaling in the regulation of milk fat synthesis.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
apo-Transferrin bovine, BioReagent, suitable for cell culture, ≥98%