Skip to Content
Merck
All Photos(1)

Documents

794333

Sigma-Aldrich

PTB7-Th

Synonym(s):

PCE-10, Poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl})

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C49H57FO2S6)n
CAS Number:
UNSPSC Code:
12352103
NACRES:
NA.23

description

Band gap: 1.57 eV
Shiny, purple, fiber-like solid

form

solid

mol wt

>145,000

solubility

chlorobenzene: soluble
dichlorobenzene: soluble

Orbital energy

HOMO -5.38 eV 
LUMO -3.81 eV 

PDI

2.2

General description

Poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7-Th) is a semiconducting polymer with a narrow band gap of 1.59 eV and an absorption peak at 780 nm. The devices fabricated from PTB7-Th have been shown to have higher output voltage and short circuit current density than PTB7.

Application

High-Efficiency Organic Solar Cells (OPVs)

OPV Device Structure: ITO/PEDOT:PSS/Polymer:PC71BM/ Al

  • JSC = 19.8 mA/cm2 \
  • VOC = 0.79 V
  • FF = 0.65
  • PCE = 10.12%
PTB7-Th is mainly used as an active layer in organic solar cells (OSCs). It forms a blend with different acceptor materials which include PC71BM, ICBA, and PCBM to potentially improve the power conversion efficiency (PCE) of the OSCs.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Single-junction polymer solar cells with high efficiency and photovoltage.
He Z, et al.
Nature Photonics, 9(3), 174-174 (2015)
Interface design for high-efficiency non-fullerene polymer solar cells.
Sun C, et al.
Energy & Environmental Science, 10(8), 1784-1791 (2017)
Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor-acceptor conjugated copolymer.
Liu C, et al.
ACS Applied Materials & Interfaces, 7(8), 4928-4935 (2015)
10.8% efficiency polymer solar cells based on PTB7-Th and PC71BM via binary solvent additives treatment.
Wan Q, et al.
Advances in Functional Materials, 26(36), 6635-6640 (2016)
Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance.
Liao S, et al.
Advanced Materials, 25(34), 4766-4771 (2013)

Articles

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service