Skip to Content
Merck
All Photos(1)

Key Documents

230693

Sigma-Aldrich

Zirconium(IV) oxide

powder, 5 μm, 99% trace metals basis

Synonym(s):

Zirconia

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
ZrO2
CAS Number:
Molecular Weight:
123.22
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:
NACRES:
NA.23
Pricing and availability is not currently available.

Quality Level

Assay

99% trace metals basis

form

powder

reaction suitability

reagent type: catalyst
core: zirconium

particle size

5 μm

bp

5000 °C (lit.)

mp

2700 °C (lit.)

density

5.89 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

O=[Zr]=O

InChI

1S/2O.Zr

InChI key

MCMNRKCIXSYSNV-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Zirconium(IV) oxide, also known as zirconia or zirconium dioxide, is a white, crystalline oxide of zirconium. It is a refractory material, meaning it is resistant to high temperatures and has good thermal stability. In powder form, zirconium(IV) oxide has a fine, silky texture and is easy to handle. Zirconium(IV) oxide powder has a number of useful properties that make it attractive for a variety of applications. It is an excellent electrical insulator, with a high melting point and a low thermal expansion coefficient. It is also chemically resistant and has good corrosion resistance. Because of these properties, zirconium(IV) oxide is commonly used in the production of ceramics, abrasives, and refractory materials. It is also used in the manufacture of electronics, as well as in the production of catalysts and coatings.

Application

Lanthanum-modified lead zirconate titanate (PLZT) fibers with a diameter of around 300 microns were produced by a thermoplastic processing method.[1]

Storage Class Code

13 - Non Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Light-Intensity-Induced Characterization of Elastic Constants and d33 Piezoelectric Coefficient of PLZT Single Fiber Based Transducers
Kozielski L, et al.
Sensors, 13(2), 2419-2429 (2013)
Zhongpu Zhang et al.
Acta biomaterialia, 9(9), 8394-8402 (2013-05-21)
Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of
Jay Lin et al.
The Journal of general virology, 95(Pt 3), 557-570 (2013-12-04)
A novel virus was detected in a sample collected from a Swedish moose (Alces alces). The virus was suggested as a member of the Hepeviridae family, although it was found to be highly divergent from the known four genotypes (gt1-4)
Alireza Abdolrasouli et al.
mBio, 6(3), e00536-e00536 (2015-06-04)
A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the cyp51A gene, which encodes
D Stender et al.
Physical chemistry chemical physics : PCCP, 17(28), 18613-18620 (2015-06-30)
The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C

Articles

Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.

Questions

1–3 of 3 Questions  
  1. How can I determine the shelf life / expiration / retest date of this product?

    1 answer
    1. If this product has an expiration or retest date, it will be shown on the Certificate of Analysis (COA, CofA). If there is no retest or expiration date listed on the product's COA, we do not have suitable stability data to determine a shelf life. For these products, the only date on the COA will be the release date; a retest, expiration, or use-by-date will not be displayed.
      For all products, we recommend handling per defined conditions as printed in our product literature and website product descriptions. We recommend that products should be routinely inspected by customers to ensure they perform as expected.
      For products without retest or expiration dates, our standard warranty of 1 year from the date of shipment is applicable.
      For more information, please refer to the Product Dating Information document: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/449/386/product-dating-information-mk.pdf

      Helpful?

  2. How is shipping temperature determined? And how is it related to the product storage temperature?

    1 answer
    1. Products may be shipped at a different temperature than the recommended long-term storage temperature. If the product quality is sensitive to short-term exposure to conditions other than the recommended long-term storage, it will be shipped on wet or dry-ice. If the product quality is NOT affected by short-term exposure to conditions other than the recommended long-term storage, it will be shipped at ambient temperature. As shipping routes are configured for minimum transit times, shipping at ambient temperature helps control shipping costs for our customers. For more information, please refer to the Storage and Transport Conditions document: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/316/622/storage-transport-conditions-mk.pdf

      Helpful?

  3. Zirconium Oxide 230693 is a nanoparticle?

    1 answer
    1. This product has an average particle size of 5 μm and would not be considered a nanoparticle. Several nanoparticle-size product options are currently available.

      See the links below to review each product option:
      544760, Zirconium(IV) oxide, nanopowder, <100 nm
      https://www.sigmaaldrich.com/product/aldrich/544760

      643025 Zirconium(IV) oxide nanoparticles, dispersion, <100 nm, 10% in water
      https://www.sigmaaldrich.com/product/aldrich/643025

      643122, Zirconium(IV) oxide nanoparticles, dispersion, <100 nm, 5% in water
      https://www.sigmaaldrich.com/product/aldrich/643122

      Helpful?

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service