Skip to Content
Merck
All Photos(3)

Documents

203815

Sigma-Aldrich

Molybdenum(VI) oxide

99.97% trace metals basis

Synonym(s):

Molybdenum trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
MoO3
CAS Number:
Molecular Weight:
143.94
EC Number:
MDL number:
UNSPSC Code:
12352303
eCl@ss:
38180807
PubChem Substance ID:
NACRES:
NA.23

Assay

99.97% trace metals basis

form

powder

mp

795 °C (lit.)

application(s)

battery manufacturing

SMILES string

O=[Mo](=O)=O

InChI

1S/Mo.3O

InChI key

JKQOBWVOAYFWKG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Molybdenum(VI) oxide, also known as molybdenum trioxide, is a compound of molybdenum and oxygen with the approximate chemical formula of MoO3. Typically, it a white or light yellow powder, although molybdenum(VI) oxide can adopt a high concentration of defects including oxygen vacancies that impart a bluish or greenish color. Molybdenum(VI) oxide has a high melting point of 2,620 °C. Chemically, molybdenum(VI) oxide is a strong oxidizing agent and has a high work function. Consequently, it is used as a catalyst in chemical reactions and as a starting material to produce other molybdenum compounds. In addition, it is added to pigments, glasses, lubricants, and plastics.

Application

Used in the solid state synthesis of a remarkable ternary, reduced molybdenum oxide, Pr4Mo9O18, whose structure contains previously unknown Mo7, Mo13and Mo19 clusters. The new cluster product is a small band gap semiconductor.
Precursor to LAMOX fast ion conductors and superconductors.
Used in the solid state synthesis of a remarkable ternary, reduced molybdenum oxide, Pr4Mo9O18, whose structure contains previously unknown Mo7, Mo13 and Mo19 clusters. The new cluster product is a small band gap semiconductor.

Pictograms

Health hazardExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Carc. 2 - Eye Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Zongyou Yin et al.
ACS nano, 6(1), 74-80 (2011-12-15)
A new phototransistor based on the mechanically exfoliated single-layer MoS(2) nanosheet is fabricated, and its light-induced electric properties are investigated in detail. Photocurrent generated from the phototransistor is solely determined by the illuminated optical power at a constant drain or
S W Liu et al.
Optics express, 19(5), 4513-4520 (2011-03-04)
We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique
MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics.
Jens Meyer et al.
Advanced materials (Deerfield Beach, Fla.), 23(1), 70-73 (2010-10-27)
Kourosh Kalantar-zadeh et al.
Nanoscale, 2(3), 429-433 (2010-07-21)
The formation of MoO(3) sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic alpha-MoO(3), which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation.
Lili Cai et al.
Nano letters, 11(2), 872-877 (2011-01-26)
We report an atmospheric, catalyst-free, rapid flame synthesis technique for growing single, branched, and flower-like α-MoO(3) nanobelt arrays on diverse substrates. The growth rate, morphology, and surface coverage density of the α-MoO(3) nanobelts were controlled by varying the flame equivalence

Articles

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service